116 lines
3.3 KiB
Markdown
116 lines
3.3 KiB
Markdown
# SOFC with Methane
|
|
|
|
This example shows a 1D isothermal SOFC (Solid oxide fuel cell) model.
|
|
|
|
The operating parameters chosen here are not necessary realistic.
|
|
|
|
```python
|
|
import gaspype as gp
|
|
from gaspype.constants import R, F
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
```
|
|
|
|
Calculation of the local equilibrium compositions on the fuel and air
|
|
side in counter flow along the fuel flow direction:
|
|
```python
|
|
fuel_utilization = 0.90
|
|
air_utilization = 0.5
|
|
t = 800 + 273.15 # K
|
|
p = 1e5 # Pa
|
|
|
|
fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2')
|
|
feed_fuel = gp.fluid({'CH4': 1, 'H2O': 0.1}, fs)
|
|
|
|
o2_full_conv = np.sum(gp.elements(feed_fuel)[['H', 'C' ,'O']] * [1/4, 1, -1/2])
|
|
|
|
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv * fuel_utilization / air_utilization
|
|
|
|
conversion = np.linspace(0, fuel_utilization, 32)
|
|
perm_oxygen = o2_full_conv * conversion * gp.fluid({'O2': 1})
|
|
|
|
fuel_side = gp.equilibrium(feed_fuel + perm_oxygen, t, p)
|
|
air_side = gp.equilibrium(feed_air - perm_oxygen, t, p)
|
|
```
|
|
|
|
Plot compositions of the fuel and air side:
|
|
```python
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel("Conversion")
|
|
ax.set_ylabel("Molar fraction")
|
|
ax.plot(conversion, fuel_side.get_x(), '-')
|
|
ax.legend(fuel_side.species)
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel("Conversion")
|
|
ax.set_ylabel("Molar fraction")
|
|
ax.plot(conversion, air_side.get_x(), '-')
|
|
ax.legend(air_side.species)
|
|
```
|
|
|
|
Calculation of the oxygen partial pressures:
|
|
```python
|
|
o2_fuel_side = gp.oxygen_partial_pressure(fuel_side, t, p)
|
|
o2_air_side = air_side.get_x('O2') * p
|
|
```
|
|
|
|
Plot oxygen partial pressures:
|
|
```python
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel("Conversion")
|
|
ax.set_ylabel("Oxygen partial pressure / Pa")
|
|
ax.set_yscale('log')
|
|
ax.plot(conversion, np.stack([o2_fuel_side, o2_air_side], axis=1), '-')
|
|
ax.legend(['o2_fuel_side', 'o2_air_side'])
|
|
```
|
|
|
|
Calculation of the local nernst potential between fuel and air side:
|
|
```python
|
|
z_O2 = 4
|
|
nernst_voltage = R*t / (z_O2*F) * np.log(o2_air_side/o2_fuel_side)
|
|
```
|
|
|
|
Plot nernst potential:
|
|
```python
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel("Conversion")
|
|
ax.set_ylabel("Voltage / V")
|
|
ax.plot(conversion, nernst_voltage, '-')
|
|
print(np.min(nernst_voltage))
|
|
```
|
|
|
|
The model uses between each node a constant conversion. Because
|
|
current density depends strongly on the position along the cell
|
|
the constant conversion does not relate to a constant distance.
|
|
|
|

|
|
|
|
To calculate the local current density (**node_current**) as well
|
|
as the total cell current (**terminal_current**) the (relative)
|
|
physical distance between the nodes (**dz**) must be calculated:
|
|
```python
|
|
cell_voltage = 0.77 # V
|
|
ASR = 0.2 # Ohm*cm²
|
|
|
|
node_current = (nernst_voltage - cell_voltage) / ASR # mA/cm² (Current density at each node)
|
|
|
|
current = (node_current[1:] + node_current[:-1]) / 2 # mA/cm² (Average current density between the nodes)
|
|
|
|
dz = 1/current / np.sum(1/current) # Relative distance between each node
|
|
|
|
terminal_current = np.sum(current * dz) # mA/cm² (Total cell current per cell area)
|
|
|
|
print(f'Terminal current: {terminal_current:.2f} A/cm²')
|
|
```
|
|
|
|
Plot the local current density:
|
|
```python
|
|
z_position = np.concatenate([[0], np.cumsum(dz)]) # Relative position of each node
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel("Relative cell position")
|
|
ax.set_ylabel("Current density / A/cm²")
|
|
ax.plot(z_position, node_current, '-')
|
|
```
|
|
|