Compare commits
No commits in common. "main" and "v1.1.2" have entirely different histories.
2
.flake8
2
.flake8
|
@ -14,7 +14,7 @@ exclude =
|
|||
dist,
|
||||
.conda,
|
||||
tests/autogenerated_*,
|
||||
docs/source/api
|
||||
docs/source/_autogenerated
|
||||
.venv,
|
||||
venv
|
||||
|
||||
|
|
|
@ -27,13 +27,6 @@ jobs:
|
|||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install -e .[dev]
|
||||
if [ "${{ matrix.python-version }}" = "3.13" ]; then
|
||||
python -m pip install cffconvert
|
||||
fi
|
||||
|
||||
- name: Validate CITATION.cff
|
||||
if: ${{ matrix.python-version == '3.13' }}
|
||||
run: cffconvert --validate
|
||||
|
||||
- name: Prepare data and compile thermo database
|
||||
run: |
|
||||
|
|
|
@ -9,7 +9,7 @@ permissions:
|
|||
contents: write
|
||||
|
||||
jobs:
|
||||
build:
|
||||
build-and-deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
@ -41,24 +41,8 @@ jobs:
|
|||
rm ./source/*.rst
|
||||
make html
|
||||
touch ./build/html/.nojekyll
|
||||
mkdir -p ./build/html/_autogenerated
|
||||
cp ./build/html/api/* ./build/html/_autogenerated/
|
||||
- name: Upload artifact
|
||||
uses: actions/upload-pages-artifact@v3
|
||||
with:
|
||||
path: docs/build/html
|
||||
|
||||
deploy:
|
||||
needs: build
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
pages: write
|
||||
id-token: write
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
uses: JamesIves/github-pages-deploy-action@v4
|
||||
with:
|
||||
branch: gh-pages
|
||||
folder: docs/build/html
|
||||
|
|
|
@ -10,10 +10,6 @@ jobs:
|
|||
name: Build and publish
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/project/${{ github.event.repository.name }}/
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ __pycache__
|
|||
.pytest_cache
|
||||
tests/autogenerated_*.py
|
||||
docs/build/
|
||||
docs/source/api/
|
||||
docs/source/_autogenerated/
|
||||
venv/
|
||||
.venv/
|
||||
thermo_data/combined_data.yaml
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
cff-version: 1.1.0
|
||||
message: "If you use this software, please cite it as below."
|
||||
title: Gaspype
|
||||
abstract: Gaspype is a performant library for thermodynamic calculations with ideal gases
|
||||
authors:
|
||||
|
@ -9,11 +8,12 @@ authors:
|
|||
affiliation: "German Aerospace Center (DLR)"
|
||||
address: "Linder Höhe"
|
||||
city: Köln
|
||||
version: v1.1.3
|
||||
version: v1.1.2
|
||||
date-released: "2025-06-24"
|
||||
#identifiers:
|
||||
# - description: This is the collection of archived snapshots of all versions of Gaspype
|
||||
# type: doi
|
||||
# value: ""
|
||||
license: MIT
|
||||
license: MIT License
|
||||
repository-code: "https://github.com/DLR-Institute-of-Future-Fuels/gaspype"
|
||||
documentation: "https://dlr-institute-of-future-fuels.github.io/gaspype"
|
29
README.md
29
README.md
|
@ -1,21 +1,20 @@
|
|||
# Gaspype
|
||||
The Python package provides a performant library for thermodynamic calculations
|
||||
The python package provides an performant library for thermodynamic calculations
|
||||
like equilibrium reactions for several hundred gas species and their mixtures -
|
||||
written in Python/NumPy.
|
||||
written in Python/Numpy.
|
||||
|
||||
Species are treated as ideal gases. Therefore the application is limited to moderate
|
||||
pressures or high temperature applications.
|
||||
|
||||
It is designed with goal to be portable to NumPy-style GPU frameworks like JAX and PyTorch.
|
||||
Its designed with goal to be portable to Numpy-style GPU frameworks like JAX and PyTorch.
|
||||
|
||||
## Key Features
|
||||
|
||||
- Pure Python implementation with NumPy vectorization for high performance
|
||||
- Immutable types and comprehensive type hints for reliability
|
||||
- Intuitive, Pythonic API for both rapid prototyping and complex multidimensional models
|
||||
- Ready for Jupyter Notebook and educational use
|
||||
- Designed for future GPU support (JAX, PyTorch)
|
||||
- Ships with a comprehensive NASA9-based species database
|
||||
## Key features
|
||||
- Tensor operations to prevent bottlenecks by the python interpreter
|
||||
- Immutable types
|
||||
- Elegant pythonic interface
|
||||
- Great readable and compact syntax when using this package
|
||||
- Good usability in Jupyter Notebook
|
||||
- High performance for multidimensional fluid arrays
|
||||
|
||||
## Installation
|
||||
Installation with pip:
|
||||
|
@ -53,7 +52,7 @@ mass = fl.get_mass()
|
|||
gas_volume = fl.get_v(t=800+273.15, p=1e5)
|
||||
```
|
||||
|
||||
The arguments can be provided as NumPy-arrays:
|
||||
The arguments can be provided as numpy-arrays:
|
||||
|
||||
``` python
|
||||
import numpy as np
|
||||
|
@ -64,7 +63,7 @@ fl.get_density(t=t_range, p=1e5)
|
|||
array([0.10122906, 0.09574625, 0.09082685, 0.08638827, 0.08236328])
|
||||
```
|
||||
A ```fluid``` object can have multiple compositions. A multidimensional ```fluid``` object
|
||||
can be created for example by multiplication with a NumPy array:
|
||||
can be created for example by multiplication with a numpy array:
|
||||
|
||||
``` python
|
||||
fl2 = gp.fluid({'H2O': 1, 'N2': 2}) + \
|
||||
|
@ -221,8 +220,8 @@ cd gaspype
|
|||
It's recommended to setup an venv:
|
||||
|
||||
```bash
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate # On Windows use `.venv\Scripts\activate`
|
||||
python -m venv venv
|
||||
source venv/bin/activate # On Windows use `venv\Scripts\activate`
|
||||
```
|
||||
|
||||
Install the package and dev-dependencies while keeping the package files
|
||||
|
|
|
@ -10,7 +10,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(0, os.path.abspath("../src/"))
|
||||
|
||||
project = 'Gaspype'
|
||||
project = 'gaspype'
|
||||
copyright = '2025, Nicolas Kruse'
|
||||
author = 'Nicolas Kruse'
|
||||
|
||||
|
|
|
@ -27,7 +27,7 @@ def write_classes(f: TextIOWrapper, patterns: list[str], module_name: str, title
|
|||
write_dochtree(f, title, classes)
|
||||
|
||||
for cls in classes:
|
||||
with open(f'docs/source/api/{cls}.md', 'w') as f2:
|
||||
with open(f'docs/source/_autogenerated/{cls}.md', 'w') as f2:
|
||||
f2.write(f'# {module_name}.{cls}\n')
|
||||
f2.write('```{eval-rst}\n')
|
||||
f2.write(f'.. autoclass:: {module_name}.{cls}\n')
|
||||
|
@ -43,7 +43,7 @@ def write_functions(f: TextIOWrapper, patterns: list[str], module_name: str, tit
|
|||
module = importlib.import_module(module_name)
|
||||
|
||||
functions = [
|
||||
name for name, _ in inspect.getmembers(module, inspect.isfunction)
|
||||
name for name, obj in inspect.getmembers(module, inspect.isfunction)
|
||||
if (any(fnmatch.fnmatch(name, pat) for pat in patterns if pat not in exclude))
|
||||
]
|
||||
|
||||
|
@ -54,7 +54,7 @@ def write_functions(f: TextIOWrapper, patterns: list[str], module_name: str, tit
|
|||
|
||||
for func in functions:
|
||||
if not func.startswith('_'):
|
||||
with open(f'docs/source/api/{func}.md', 'w') as f2:
|
||||
with open(f'docs/source/_autogenerated/{func}.md', 'w') as f2:
|
||||
f2.write(f'# {module_name}.{func}\n')
|
||||
f2.write('```{eval-rst}\n')
|
||||
f2.write(f'.. autofunction:: {module_name}.{func}\n')
|
||||
|
@ -74,9 +74,9 @@ def write_dochtree(f: TextIOWrapper, title: str, items: list[str]):
|
|||
|
||||
if __name__ == "__main__":
|
||||
# Ensure the output directory exists
|
||||
os.makedirs('docs/source/api', exist_ok=True)
|
||||
os.makedirs('docs/source/_autogenerated', exist_ok=True)
|
||||
|
||||
with open('docs/source/api/index.md', 'w') as f:
|
||||
with open('docs/source/_autogenerated/index.md', 'w') as f:
|
||||
f.write('# Classes and functions\n\n')
|
||||
|
||||
write_classes(f, ['*'], 'gaspype', title='Classes')
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
```{toctree}
|
||||
:maxdepth: 1
|
||||
:hidden:
|
||||
api/index
|
||||
api/examples
|
||||
repo
|
||||
_autogenerated/index
|
||||
_autogenerated/examples
|
||||
```
|
||||
|
||||
```{include} ../../README.md
|
||||
|
|
|
@ -51,7 +51,7 @@ def render_examples(filter: str, example_file: str):
|
|||
f.write('## Download Jupyter Notebooks\n\n')
|
||||
for path, name in zip(files, names):
|
||||
if name.lower() != 'readme':
|
||||
run_rendering(path, 'docs/source/api')
|
||||
run_rendering(path, 'docs/source/_autogenerated')
|
||||
notebook = name + '.ipynb'
|
||||
f.write(f'- [{notebook}]({notebook})\n\n')
|
||||
|
||||
|
@ -63,4 +63,4 @@ def render_examples(filter: str, example_file: str):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
render_examples('examples/*.md', 'docs/source/api/examples.md')
|
||||
render_examples('examples/*.md', 'docs/source/_autogenerated/examples.md')
|
||||
|
|
|
@ -1,3 +0,0 @@
|
|||
# Code repository
|
||||
|
||||
Code repository is on GitHub: [github.com/DLR-Institute-of-Future-Fuels/gaspype](https://github.com/DLR-Institute-of-Future-Fuels/gaspype).
|
|
@ -11,11 +11,11 @@ The conversion is done like the following automated by the
|
|||
[docs/source/render_examples.py](../docs/source/render_examples.py) script:
|
||||
``` bash
|
||||
# Converting markdown with code sections to Jupyter Notebook and run it:
|
||||
notedown examples/soec_methane.md --to notebook --output docs/source/api/soec_methane.ipynb --run
|
||||
notedown examples/soec_methane.md --to notebook --output docs/source/_autogenerated/soec_methane.ipynb --run
|
||||
|
||||
# Converting the Jupyter Notebook to Markdown and a folder with image
|
||||
# files placed in docs/source/api/:
|
||||
jupyter nbconvert --to markdown docs/source/api/soec_methane.ipynb --output soec_methane.md
|
||||
# files placed in docs/source/_autogenerated/:
|
||||
jupyter nbconvert --to markdown docs/source/_autogenerated/soec_methane.ipynb --output soec_methane.md
|
||||
```
|
||||
|
||||
A new example Markdown file can be created from a Jupyter Notebook running
|
||||
|
|
|
@ -1,45 +0,0 @@
|
|||
# Thermodynamics of Hydrogen Production
|
||||
|
||||
The minimal energy required to produce hydrogen from liquid water is given by the
|
||||
Higher Heating Value (HHV). The HHV is the sum of the difference
|
||||
between the enthalpies of products and educts (LHV: Lower Heating Value) and
|
||||
the Heat of Evaporation for water.
|
||||
|
||||
```python
|
||||
import gaspype as gp
|
||||
|
||||
lhv = gp.fluid({'H2': 1, 'O2': 1/2, 'H2O': -1}).get_H(25 + 273.15)
|
||||
dh_v = 43990 # J/mol (heat of evaporation for water @ 25 °C)
|
||||
|
||||
hhv = lhv + dh_v
|
||||
print(f'LHV: {lhv/1e3:.1f} kJ/mol')
|
||||
print(f'HHV: {hhv/1e3:.1f} kJ/mol')
|
||||
```
|
||||
|
||||
Thermodynamics also defines which part of the energy must be
|
||||
provided as work (e.g., electric power) and which part can be supplied
|
||||
as heat. This depends on temperature and pressure. For generating 1 bar
|
||||
of hydrogen the temperature dependency can be calculated as follows:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
t = np.linspace(0, 2000, 128) # 0 to 2000 °C
|
||||
p = 1e5 # Pa (=1 bar)
|
||||
|
||||
g_products = gp.fluid({'H2': 1, 'O2': 1/2, 'H2O': 0}).get_G(t + 273.15, p)
|
||||
g_educts = gp.fluid({'H2': 0, 'O2': 0, 'H2O': 1}).get_G(t + 273.15, p)
|
||||
|
||||
work = g_products - g_educts # J/mol
|
||||
heat = lhv - work # J/mol
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4), dpi=120)
|
||||
ax.set_xlabel("Temperature / °C")
|
||||
ax.set_ylabel("Energy / kWh/kg")
|
||||
k = 1e-3 / 3600 / 0.002 # Conversion factor from J/mol to kWh/kg for hydrogen
|
||||
ax.stackplot(t, k * work, k * heat, k * dh_v * np.ones_like(t))
|
||||
```
|
||||
|
||||
Green is the heat of evaporation, orange the additional heat provided at
|
||||
the given temperature and blue the work.
|
|
@ -25,8 +25,8 @@ Equilibrium calculation for methane steam mixtures:
|
|||
```python
|
||||
ratio = np.linspace(0.01, 1.5, num=64)
|
||||
|
||||
fl = gp.fluid({'CH4': 1}, fs) + ratio * gp.fluid({'H2O': 1}, fs)
|
||||
equilibrium_h2o = gp.equilibrium(fl, t, p)
|
||||
el = gp.fluid({'CH4': 1}, fs) + ratio * gp.fluid({'H2O': 1}, fs)
|
||||
equilibrium_h2o = gp.equilibrium(el, t, p)
|
||||
```
|
||||
|
||||
|
||||
|
@ -44,8 +44,8 @@ Equilibrium calculation for methane CO2 mixtures:
|
|||
|
||||
|
||||
```python
|
||||
fl = gp.fluid({'CH4': 1}, fs) + ratio * gp.fluid({'CO2': 1}, fs)
|
||||
equilibrium_co2 = gp.equilibrium(fl, t, p)
|
||||
el = gp.fluid({'CH4': 1}, fs) + ratio * gp.fluid({'CO2': 1}, fs)
|
||||
equilibrium_co2 = gp.equilibrium(el, t, p)
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
# SOEC Co-Electrolysis
|
||||
# SOEC with Methane
|
||||
|
||||
This example shows a 1D isothermal SOEC (Solid oxide electrolyzer cell) model for
|
||||
converting carbon dioxide and steam into syngas.
|
||||
This example shows a 1D isothermal SOEC (Solid oxide electrolyzer cell) model.
|
||||
|
||||
The operating parameters chosen here are not necessarily realistic. For example,
|
||||
a utilization of 0.95 causes issues with the formation of solid carbon.
|
||||
The operating parameters chosen here are not necessary realistic
|
||||
|
||||
```python
|
||||
import gaspype as gp
|
||||
|
@ -13,26 +11,26 @@ import numpy as np
|
|||
import matplotlib.pyplot as plt
|
||||
```
|
||||
|
||||
Calculate equilibrium compositions for fuel and air sides in counter flow
|
||||
along the fuel flow direction:
|
||||
Calculation of the local equilibrium compositions on the fuel and air
|
||||
side in counter flow along the fuel flow direction:
|
||||
```python
|
||||
utilization = 0.95
|
||||
air_dilution = 0.2
|
||||
t = 700 + 273.15 # K
|
||||
fuel_utilization = 0.90
|
||||
air_utilization = 0.5
|
||||
t = 800 + 273.15 #K
|
||||
p = 1e5 #Pa
|
||||
|
||||
fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2')
|
||||
feed_fuel = gp.fluid({'H2O': 2, 'CO2': 1}, fs)
|
||||
feed_fuel = gp.fluid({'CH4': 1, 'H2O': 0.1}, fs)
|
||||
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel).get_n(['C' ,'O']) * [-1/2, 1/2])
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel)[['H', 'C' ,'O']] * [1/4, 1, -1/2])
|
||||
|
||||
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv * utilization * air_dilution
|
||||
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv / air_utilization
|
||||
|
||||
conversion = np.linspace(0, utilization, 128)
|
||||
conversion = np.linspace(0, fuel_utilization, 32)
|
||||
perm_oxygen = o2_full_conv * conversion * gp.fluid({'O2': 1})
|
||||
|
||||
fuel_side = gp.equilibrium(feed_fuel - perm_oxygen, t, p)
|
||||
air_side = gp.equilibrium(feed_air + perm_oxygen, t, p)
|
||||
fuel_side = gp.equilibrium(feed_fuel + perm_oxygen, t, p)
|
||||
air_side = gp.equilibrium(feed_air - perm_oxygen, t, p)
|
||||
```
|
||||
|
||||
Plot compositions of the fuel and air side:
|
||||
|
@ -66,20 +64,13 @@ ax.plot(conversion, np.stack([o2_fuel_side, o2_air_side], axis=1), '-')
|
|||
ax.legend(['o2_fuel_side', 'o2_air_side'])
|
||||
```
|
||||
|
||||
The high oxygen partial pressure at the inlet is in reality lower.
|
||||
The assumption that gas inter-diffusion in the flow direction is slower
|
||||
than the gas velocity does not hold at this very high gradient. However
|
||||
often the oxygen partial pressure is still to high to prevent oxidation of the
|
||||
cell/electrode. This can be effectively prevented by recycling small amounts of
|
||||
the hydrogen riche output gas.
|
||||
|
||||
Calculation of the local nernst potential between fuel and air side:
|
||||
```python
|
||||
z_O2 = 4
|
||||
nernst_voltage = R*t / (z_O2*F) * np.log(o2_air_side/o2_fuel_side)
|
||||
```
|
||||
|
||||
Plot nernst potential:
|
||||
#Plot nernst potential:
|
||||
```python
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Conversion")
|
||||
|
@ -98,16 +89,16 @@ To calculate the local current density (**node_current**) as well
|
|||
as the total cell current (**terminal_current**) the (relative)
|
||||
physical distance between the nodes (**dz**) must be calculated:
|
||||
```python
|
||||
cell_voltage = 1.3 # V
|
||||
cell_voltage = 0.77 #V
|
||||
ASR = 0.2 #Ohm*cm²
|
||||
|
||||
node_current = (nernst_voltage - cell_voltage) / ASR # A/cm² (Current density at each node)
|
||||
node_current = (nernst_voltage - cell_voltage) / ASR # mA/cm² (Current density at each node)
|
||||
|
||||
current = (node_current[1:] + node_current[:-1]) / 2 # A/cm² (Average current density between the nodes)
|
||||
current = (node_current[1:] + node_current[:-1]) / 2 # mA/cm² (Average current density between the nodes)
|
||||
|
||||
dz = 1/current / np.sum(1/current) # Relative distance between each node
|
||||
|
||||
terminal_current = np.sum(current * dz) # A/cm² (Total cell current per cell area)
|
||||
terminal_current = np.sum(current * dz) # mA/cm² (Total cell current per cell area)
|
||||
|
||||
print(f'Terminal current: {terminal_current:.2f} A/cm²')
|
||||
```
|
|
@ -1,141 +0,0 @@
|
|||
# SOFC with Methane
|
||||
|
||||
This example shows a 1D isothermal SOFC (Solid oxide fuel cell) model.
|
||||
|
||||
The operating parameters chosen here are not necessarily realistic due to
|
||||
constraints not included in this model. Under the example condition the
|
||||
formation of solid carbon is for example very likely. A pre-reforming step
|
||||
is typically applied when operating on methane.
|
||||
|
||||
```python
|
||||
import gaspype as gp
|
||||
from gaspype.constants import R, F
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
```
|
||||
|
||||
Calculate equilibrium compositions for fuel and air sides
|
||||
in counter flow along the fuel flow direction:
|
||||
```python
|
||||
fuel_utilization = 0.90
|
||||
air_utilization = 0.5
|
||||
t = 800 + 273.15 # K
|
||||
p = 1e5 # Pa
|
||||
|
||||
fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2')
|
||||
feed_fuel = gp.fluid({'CH4': 1, 'H2O': 0.1}, fs)
|
||||
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel).get_n(['H', 'C' ,'O']) * [1/4, 1, -1/2])
|
||||
|
||||
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv * fuel_utilization / air_utilization
|
||||
|
||||
conversion = np.linspace(0, fuel_utilization, 32)
|
||||
perm_oxygen = o2_full_conv * conversion * gp.fluid({'O2': 1})
|
||||
|
||||
fuel_side = gp.equilibrium(feed_fuel + perm_oxygen, t, p)
|
||||
air_side = gp.equilibrium(feed_air - perm_oxygen, t, p)
|
||||
```
|
||||
|
||||
Plot compositions of the fuel and air side:
|
||||
```python
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Conversion")
|
||||
ax.set_ylabel("Molar fraction")
|
||||
ax.plot(conversion, fuel_side.get_x(), '-')
|
||||
ax.legend(fuel_side.species)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Conversion")
|
||||
ax.set_ylabel("Molar fraction")
|
||||
ax.plot(conversion, air_side.get_x(), '-')
|
||||
ax.legend(air_side.species)
|
||||
```
|
||||
|
||||
Calculation of the oxygen partial pressures:
|
||||
```python
|
||||
o2_fuel_side = gp.oxygen_partial_pressure(fuel_side, t, p)
|
||||
o2_air_side = air_side.get_x('O2') * p
|
||||
```
|
||||
|
||||
Plot oxygen partial pressures:
|
||||
```python
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Conversion")
|
||||
ax.set_ylabel("Oxygen partial pressure / Pa")
|
||||
ax.set_yscale('log')
|
||||
ax.plot(conversion, np.stack([o2_fuel_side, o2_air_side], axis=1), '-')
|
||||
ax.legend(['o2_fuel_side', 'o2_air_side'])
|
||||
```
|
||||
|
||||
Calculation of the local nernst potential between fuel and air side:
|
||||
```python
|
||||
z_O2 = 4 # Number of electrons transferred per O2 molecule
|
||||
nernst_voltage = R*t / (z_O2*F) * np.log(o2_air_side/o2_fuel_side)
|
||||
```
|
||||
|
||||
Plot nernst potential:
|
||||
```python
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Conversion")
|
||||
ax.set_ylabel("Voltage / V")
|
||||
ax.plot(conversion, nernst_voltage, '-')
|
||||
print(np.min(nernst_voltage))
|
||||
```
|
||||
|
||||
The model uses between each node a constant conversion. Because
|
||||
current density depends strongly on the position along the cell
|
||||
the constant conversion does not relate to a constant distance.
|
||||
|
||||

|
||||
|
||||
To calculate the local current density (**node_current**) as well
|
||||
as the total cell current (**terminal_current**) the (relative)
|
||||
physical distance between the nodes (**dz**) must be calculated:
|
||||
```python
|
||||
cell_voltage = 0.77 # V
|
||||
ASR = 0.2 # Ohm*cm²
|
||||
|
||||
node_current = (nernst_voltage - cell_voltage) / ASR # A/cm² (Current density at each node)
|
||||
|
||||
current = (node_current[1:] + node_current[:-1]) / 2 # A/cm² (Average current density between the nodes)
|
||||
|
||||
dz = 1/current / np.sum(1/current) # Relative distance between each node
|
||||
|
||||
terminal_current = np.sum(current * dz) # A/cm² (Total cell current per cell area)
|
||||
|
||||
print(f'Terminal current: {terminal_current:.2f} A/cm²')
|
||||
```
|
||||
|
||||
Plot the local current density:
|
||||
```python
|
||||
z_position = np.concatenate([[0], np.cumsum(dz)]) # Relative position of each node
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Relative cell position")
|
||||
ax.set_ylabel("Current density / A/cm²")
|
||||
ax.plot(z_position, node_current, '-')
|
||||
```
|
||||
|
||||
Based on the cell current and voltage the energy balance can be calculated.
|
||||
In the following the electric cell output power (often referred to as "DC power")
|
||||
and lower heating value (LHV) are calculated. The numbers here are per cell area for
|
||||
being cell and stack size independent. The quotient of both is often referred to as
|
||||
LHV based DC efficiency.
|
||||
|
||||
```python
|
||||
dc_power = cell_voltage * terminal_current # W/cm²
|
||||
print(f"DC power: {dc_power:.2f} W/cm²")
|
||||
|
||||
lhv = gp.fluid({'CH4': 1, 'H2O': -2, 'CO2': -1}).get_H(25 + 273.15) # J/mol (LHV of methane)
|
||||
|
||||
# LHV based chemical input power:
|
||||
lhv_power = lhv * terminal_current / (2 * z_O2 * F) # W/cm² (two O2 per CH4 for full oxidation)
|
||||
efficiency = dc_power / lhv_power
|
||||
print(f"LHV based DC efficiency: {efficiency*100:.1f} %")
|
||||
|
||||
# Or by shortening the therms:
|
||||
lhv_voltage = lhv / (2 * z_O2 * F) # V
|
||||
print(f"LHV voltage: {lhv_voltage:.2f} V")
|
||||
efficiency = cell_voltage / lhv_voltage # LHV based DC efficiency
|
||||
print(f"LHV based DC efficiency: {efficiency*100:.1f} %")
|
||||
```
|
|
@ -32,11 +32,8 @@ el = gp.elements({'S': 1}, fs) + oxygen_ratio * gp.elements({'O': 1}, fs)
|
|||
|
||||
composition = gp.equilibrium(el, 800+273.15, 1e4)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Oxygen to sulfur ratio")
|
||||
ax.set_ylabel("Molar fraction")
|
||||
ax.plot(oxygen_ratio, composition.get_x(), '-')
|
||||
ax.legend(composition.species)
|
||||
plt.plot(oxygen_ratio, composition.get_x())
|
||||
plt.legend(composition.species)
|
||||
```
|
||||
|
||||
Calculation of the molar equilibrium fractions for sulfur and oxygen depending on temperature in °C:
|
||||
|
@ -50,9 +47,6 @@ el = gp.elements({'S': 1, 'O':2.5}, fs)
|
|||
t_range = np.linspace(500, 1300, num=32)
|
||||
composition = gp.equilibrium(el, t_range+273.15, 1e4)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Temperature / °C")
|
||||
ax.set_ylabel("Molar fraction")
|
||||
ax.plot(t_range, composition.get_x(), '-')
|
||||
ax.legend(composition.species)
|
||||
plt.plot(t_range, composition.get_x())
|
||||
plt.legend(composition.species)
|
||||
```
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Carbon Activity
|
||||
|
||||
This example shows the calculation of the carbon activity for methane mixtures
|
||||
in thermodynamic equilibrium.
|
||||
This example shows the equilibrium calculation for solid carbon.
|
||||
|
||||
|
||||
```python
|
||||
import gaspype as gp
|
||||
|
@ -66,25 +66,3 @@ ax.plot(ratio, carbon_activity.T)
|
|||
ax.hlines(1, np.min(ratio), np.max(ratio), colors='k', linestyles='dashed')
|
||||
ax.legend([f'{tc} °C' for tc in t_range])
|
||||
```
|
||||
|
||||
Let's do the equilibrium calculation for methane CO2 mixtures as well:
|
||||
|
||||
|
||||
```python
|
||||
fl_co2 = gp.fluid({'CH4': 1}, fs) + ratio * gp.fluid({'CO2': 1}, fs)
|
||||
carbon_activity_co2 = np.vstack([partial_c_activity(fl_co2, tc + 273.15, p) for tc in t_range])
|
||||
```
|
||||
|
||||
And plot carbon activities over the CO2 to CH4 ratio:
|
||||
|
||||
|
||||
```python
|
||||
fig, ax = plt.subplots(figsize=(6, 4), dpi=120)
|
||||
ax.set_xlabel("CO2/CH4")
|
||||
ax.set_ylabel("carbon activity")
|
||||
ax.set_ylim(1e-1, 1e3)
|
||||
ax.set_yscale('log')
|
||||
ax.plot(ratio, carbon_activity_co2.T)
|
||||
ax.hlines(1, np.min(ratio), np.max(ratio), colors='k', linestyles='dashed')
|
||||
ax.legend([f'{tc} °C' for tc in t_range])
|
||||
```
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[project]
|
||||
name = "gaspype"
|
||||
version = "1.1.3"
|
||||
version = "1.1.2"
|
||||
authors = [
|
||||
{ name="Nicolas Kruse", email="nicolas.kruse@dlr.de" },
|
||||
]
|
||||
|
@ -18,10 +18,9 @@ dependencies = [
|
|||
]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://dlr-institute-of-future-fuels.github.io/gaspype/"
|
||||
documentation = "https://dlr-institute-of-future-fuels.github.io/gaspype/api/"
|
||||
Repository = "https://github.com/DLR-Institute-of-Future-Fuels/gaspype.git"
|
||||
Homepage = "https://github.com/DLR-Institute-of-Future-Fuels/gaspype"
|
||||
Issues = "https://github.com/DLR-Institute-of-Future-Fuels/gaspype/issues"
|
||||
documentation = "https://dlr-institute-of-future-fuels.github.io/gaspype/"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=61.0", "wheel"]
|
||||
|
@ -31,7 +30,7 @@ build-backend = "setuptools.build_meta"
|
|||
where = ["src"]
|
||||
|
||||
[tool.setuptools.package-data]
|
||||
gaspype = ["data/therm_data.bin", "py.typed"]
|
||||
gaspype = ["data/therm_data.bin"]
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = [
|
||||
|
|
|
@ -7,7 +7,7 @@ from gaspype._phys_data import atomic_weights, db_reader
|
|||
import re
|
||||
import pkgutil
|
||||
from .constants import R, epsy, p0
|
||||
from .typing import FloatArray, NDFloat, Shape, ArrayIndices
|
||||
from .typing import FloatArray, NDFloat, Shape
|
||||
|
||||
T = TypeVar('T', 'fluid', 'elements')
|
||||
|
||||
|
@ -483,28 +483,6 @@ class fluid:
|
|||
assert set(species) <= set(self.fs.species), f'Species {", ".join([s for s in species if s not in self.fs.species])} is/are not part of the fluid system'
|
||||
return self.array_fractions[..., [self.fs.species.index(k) for k in species]]
|
||||
|
||||
def get_n(self, species: str | list[str] | None = None) -> FloatArray:
|
||||
"""Get molar amount of fluid species
|
||||
|
||||
Args:
|
||||
species: A single species name, a list of species names or None for
|
||||
returning the amount of all species
|
||||
|
||||
Returns:
|
||||
Returns an array of floats with the molar amount of the species.
|
||||
If the a single species name is provided the return float array has
|
||||
the same dimensions as the fluid type. If a list or None is provided
|
||||
the return array has an additional dimension for the species.
|
||||
"""
|
||||
if not species:
|
||||
return self.array_composition
|
||||
elif isinstance(species, str):
|
||||
assert species in self.fs.species, f'Species {species} is not part of the fluid system'
|
||||
return self.array_composition[..., self.fs.species.index(species)]
|
||||
else:
|
||||
assert set(species) <= set(self.fs.species), f'Species {", ".join([s for s in species if s not in self.fs.species])} is/are not part of the fluid system'
|
||||
return self.array_composition[..., [self.fs.species.index(k) for k in species]]
|
||||
|
||||
def __add__(self, other: T) -> T:
|
||||
return array_operation(self, other, np.add)
|
||||
|
||||
|
@ -532,21 +510,16 @@ class fluid:
|
|||
# def __array__(self) -> FloatArray:
|
||||
# return self.array_composition
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: str) -> FloatArray:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: ArrayIndices) -> 'fluid':
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: str | ArrayIndices) -> Any:
|
||||
def __getitem__(self, key: str | int | list[str] | list[int] | slice) -> FloatArray:
|
||||
if isinstance(key, str):
|
||||
assert key in self.fs.species, f'Species {key} is not part of the fluid system'
|
||||
return self.array_composition[..., self.fs.species.index(key)]
|
||||
elif isinstance(key, (slice, int)):
|
||||
return self.array_composition[..., key]
|
||||
else:
|
||||
key_tuple = key if isinstance(key, tuple) else (key,)
|
||||
return fluid(self.array_composition[(*key_tuple, slice(None))], self.fs)
|
||||
mset = set(self.fs.species) | set(range(len(self.fs.species)))
|
||||
assert set(key) <= mset, f'Species {", ".join([str(s) for s in key if s not in mset])} is/are not part of the fluid system'
|
||||
return self.array_composition[..., [self.fs.species.index(k) if isinstance(k, str) else k for k in key]]
|
||||
|
||||
def __iter__(self) -> Iterator[dict[str, float]]:
|
||||
assert len(self.shape) < 2, 'Cannot iterate over species with more than one dimension'
|
||||
|
@ -641,28 +614,6 @@ class elements:
|
|||
"""
|
||||
return np.sum(self.array_elemental_composition * self.fs.array_atomic_mass, axis=-1, dtype=NDFloat)
|
||||
|
||||
def get_n(self, elemental_species: str | list[str] | None = None) -> FloatArray:
|
||||
"""Get molar amount of elements
|
||||
|
||||
Args:
|
||||
elemental_species: A single element name, a list of element names or None for
|
||||
returning the amount of all element
|
||||
|
||||
Returns:
|
||||
Returns an array of floats with the molar amount of the elements.
|
||||
If the a single element name is provided the return float array has
|
||||
the same dimensions as the fluid type. If a list or None is provided
|
||||
the return array has an additional dimension for the elements.
|
||||
"""
|
||||
if not elemental_species:
|
||||
return self.array_elemental_composition
|
||||
elif isinstance(elemental_species, str):
|
||||
assert elemental_species in self.fs.elements, f'Element {elemental_species} is not part of the fluid system'
|
||||
return self.array_elemental_composition[..., self.fs.elements.index(elemental_species)]
|
||||
else:
|
||||
assert set(elemental_species) <= set(self.fs.elements), f'Elements {", ".join([s for s in elemental_species if s not in self.fs.elements])} is/are not part of the fluid system'
|
||||
return self.array_elemental_composition[..., [self.fs.elements.index(k) for k in elemental_species]]
|
||||
|
||||
def __add__(self, other: 'fluid | elements') -> 'elements':
|
||||
return array_operation(self, other, np.add)
|
||||
|
||||
|
@ -688,21 +639,16 @@ class elements:
|
|||
def __array__(self) -> FloatArray:
|
||||
return self.array_elemental_composition
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: str) -> FloatArray:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: ArrayIndices) -> 'elements':
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: str | ArrayIndices) -> Any:
|
||||
def __getitem__(self, key: str | int | list[str] | list[int] | slice) -> FloatArray:
|
||||
if isinstance(key, str):
|
||||
assert key in self.fs.elements, f'Element {key} is not part of the fluid system'
|
||||
return self.array_elemental_composition[..., self.fs.elements.index(key)]
|
||||
elif isinstance(key, (slice, int)):
|
||||
return self.array_elemental_composition[..., key]
|
||||
else:
|
||||
key_tuple = key if isinstance(key, tuple) else (key,)
|
||||
return elements(self.array_elemental_composition[(*key_tuple, slice(None))], self.fs)
|
||||
mset = set(self.fs.elements) | set(range(len(self.fs.elements)))
|
||||
assert set(key) <= mset, f'Elements {", ".join([str(s) for s in key if s not in mset])} is/are not part of the fluid system'
|
||||
return self.array_elemental_composition[..., [self.fs.elements.index(k) if isinstance(k, str) else k for k in key]]
|
||||
|
||||
def __iter__(self) -> Iterator[dict[str, float]]:
|
||||
assert len(self.shape) < 2, 'Cannot iterate over elements with more than one dimension'
|
||||
|
|
|
@ -1,10 +1,6 @@
|
|||
from numpy import float64
|
||||
from numpy.typing import NDArray
|
||||
from typing import Sequence
|
||||
from types import EllipsisType
|
||||
|
||||
Shape = tuple[int, ...]
|
||||
NDFloat = float64
|
||||
FloatArray = NDArray[NDFloat]
|
||||
ArrayIndex = int | slice | None | EllipsisType | Sequence[int]
|
||||
ArrayIndices = ArrayIndex | tuple[ArrayIndex, ...]
|
||||
|
|
|
@ -1,42 +0,0 @@
|
|||
import cantera as ct
|
||||
import numpy as np
|
||||
import time
|
||||
import gaspype as gp
|
||||
|
||||
gas = ct.Solution("gri30.yaml")
|
||||
composition = {"H2": 0.3, "H2O": 0.3, "N2": 0.4}
|
||||
|
||||
n_species = gas.n_species
|
||||
n_states = 1_000_000
|
||||
|
||||
# Random temperatures and pressures
|
||||
temperatures = np.linspace(300.0, 2500.0, n_states)
|
||||
pressures = np.full(n_states, ct.one_atm)
|
||||
|
||||
# Create a SolutionArray with many states at once
|
||||
states = ct.SolutionArray(gas, len(temperatures))
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Vectorized assignment
|
||||
t0 = time.perf_counter()
|
||||
states.TPX = temperatures, pressures, composition
|
||||
cp_values = states.cp_mole
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized cantera)")
|
||||
print("First 5 Cp values (J/mol-K):", cp_values[:5] / 1000)
|
||||
|
||||
|
||||
# Vectorized fluid creation
|
||||
fluid = gp.fluid(composition)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Benchmark: calculate Cp for all states at once
|
||||
t0 = time.perf_counter()
|
||||
cp_values = fluid.get_cp(t=temperatures)
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized Gaspype)")
|
||||
print("First 5 Cp values (J/mol·K):", cp_values[:5])
|
|
@ -1,55 +0,0 @@
|
|||
import cantera as ct
|
||||
import numpy as np
|
||||
import time
|
||||
import gaspype as gp
|
||||
|
||||
gas = ct.Solution("gri30.yaml")
|
||||
n_species = gas.n_species
|
||||
n_states = 1_000_000
|
||||
|
||||
# Random temperatures and pressures
|
||||
temperatures = np.linspace(300.0, 2500.0, n_states)
|
||||
pressures = np.full(n_states, ct.one_atm)
|
||||
|
||||
# Generate random compositions for H2, H2O, N2
|
||||
rng = np.random.default_rng(seed=42)
|
||||
fractions = rng.random((n_states, 3))
|
||||
fractions /= fractions.sum(axis=1)[:, None] # normalize
|
||||
|
||||
# Convert to full 53-species mole fraction array
|
||||
X = np.zeros((n_states, n_species))
|
||||
X[:, gas.species_index('H2')] = fractions[:, 0]
|
||||
X[:, gas.species_index('H2O')] = fractions[:, 1]
|
||||
X[:, gas.species_index('N2')] = fractions[:, 2]
|
||||
|
||||
# Build SolutionArray
|
||||
states = ct.SolutionArray(gas, n_states)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Vectorized assignment
|
||||
t0 = time.perf_counter()
|
||||
states.TPX = temperatures, pressures, X
|
||||
cp_values = states.cp_mole
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized cantera)")
|
||||
print("First 5 Cp values (J/mol-K):", cp_values[:5] / 1000)
|
||||
|
||||
|
||||
# Vectorized fluid creation
|
||||
fluid = (
|
||||
gp.fluid({'H2': 1}) * fractions[:, 0]
|
||||
+ gp.fluid({'H2O': 1}) * fractions[:, 1]
|
||||
+ gp.fluid({'N2': 1}) * fractions[:, 2]
|
||||
)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Benchmark: calculate Cp for all states at once
|
||||
t0 = time.perf_counter()
|
||||
cp_values = fluid.get_cp(t=temperatures)
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized Gaspype)")
|
||||
print("First 5 Cp values (J/mol·K):", cp_values[:5])
|
|
@ -1,54 +0,0 @@
|
|||
import cantera as ct
|
||||
import gaspype as gp
|
||||
import numpy as np
|
||||
import time
|
||||
from gaspype import fluid_system
|
||||
|
||||
# -----------------------
|
||||
# Settings
|
||||
# -----------------------
|
||||
n_temps = 1000
|
||||
temps_C = np.linspace(300, 1000, n_temps) # °C
|
||||
temperatures = temps_C + 273.15 # K
|
||||
pressure = 101325 # Pa (1 atm)
|
||||
|
||||
composition = {"CH4": 0.8, "H2O": 0.2}
|
||||
species_to_track = ["CH4", "H2O", "CO", "CO2", "H2", "O2"]
|
||||
|
||||
# -----------------------
|
||||
# Cantera benchmark
|
||||
# -----------------------
|
||||
gas = ct.Solution("gri30.yaml")
|
||||
gas.TPX = temperatures[0], pressure, composition
|
||||
|
||||
eq_cantera = np.zeros((n_temps, len(species_to_track)))
|
||||
|
||||
time.sleep(0.5)
|
||||
t0 = time.perf_counter()
|
||||
for i, T in enumerate(temperatures):
|
||||
gas.TP = T, pressure
|
||||
gas.equilibrate('TP')
|
||||
eq_cantera[i, :] = [gas.X[gas.species_index(s)] for s in species_to_track]
|
||||
elapsed_cantera = time.perf_counter() - t0
|
||||
print(f"Cantera: {elapsed_cantera:.4f} s")
|
||||
|
||||
# -----------------------
|
||||
# Gaspype benchmark
|
||||
# -----------------------
|
||||
# Construct the fluid with composition and tracked species
|
||||
fluid = gp.fluid(composition, fs=fluid_system(species_to_track))
|
||||
|
||||
time.sleep(0.5)
|
||||
t0 = time.perf_counter()
|
||||
eq_gaspype = gp.equilibrium(fluid, t=temperatures, p=pressure)
|
||||
elapsed_gaspype = time.perf_counter() - t0
|
||||
print(f"Gaspype: {elapsed_gaspype:.4f} s")
|
||||
|
||||
# -----------------------
|
||||
# Compare first 5 results
|
||||
# -----------------------
|
||||
print("First 5 equilibrium compositions (mole fractions):")
|
||||
for i in range(5):
|
||||
print(f"T = {temperatures[i]:.1f} K")
|
||||
print(" Cantera:", eq_cantera[i])
|
||||
print(" Gaspype :", eq_gaspype.array_composition[i])
|
|
@ -96,7 +96,6 @@ def segments_to_test(segments: Iterable[markdown_segment], script_language: str
|
|||
ret_block_flag = lines[-1] if (not re.match(r'^[^(]*=', lines[-1]) and
|
||||
not lines[-1].startswith('import ') and
|
||||
not lines[-1].startswith('from ') and
|
||||
not lines[-1].startswith('print(') and
|
||||
not lines[-1].startswith(' ')) else None
|
||||
# print('Last line: ', ret_block_flag, '-----------', lines[-1])
|
||||
|
||||
|
|
|
@ -12,28 +12,28 @@ def test_str_index():
|
|||
assert el['C'].shape == (2, 3, 4)
|
||||
|
||||
|
||||
def test_single_axis_int_index():
|
||||
assert fl[0].shape == (3, 4)
|
||||
assert fl[1].shape == (3, 4)
|
||||
assert el[1].shape == (3, 4)
|
||||
assert el[0].shape == (3, 4)
|
||||
def test_str_list_index():
|
||||
assert fl[['CO2', 'H2', 'CO']].shape == (2, 3, 4, 3)
|
||||
assert el[['C', 'H', 'O']].shape == (2, 3, 4, 3)
|
||||
|
||||
|
||||
def test_single_axis_int_list():
|
||||
assert fl[:, [0, 1]].shape == (2, 2, 4)
|
||||
assert el[:, [0, 1]].shape == (2, 2, 4)
|
||||
def test_int_list_index():
|
||||
assert fl[[1, 2, 0, 5]].shape == (2, 3, 4, 4)
|
||||
assert el[[1, 2, 0, 3]].shape == (2, 3, 4, 4)
|
||||
|
||||
|
||||
def test_multi_axis_int_index():
|
||||
assert fl[0, 1].shape == (4,)
|
||||
assert fl[0, 1, 2].shape == tuple()
|
||||
assert fl[0, 2].shape == (4,)
|
||||
assert fl[:, 2, :].shape == (2, 4)
|
||||
assert fl[0, [1, 2]].shape == (2, 4)
|
||||
assert fl[..., 0].shape == (2, 3)
|
||||
assert el[0, 1].shape == (4,)
|
||||
assert el[0, 1, 2].shape == tuple()
|
||||
assert el[0, 2].shape == (4,)
|
||||
assert el[:, 2, :].shape == (2, 4)
|
||||
assert el[0, [1, 2]].shape == (2, 4)
|
||||
assert el[..., 0].shape == (2, 3)
|
||||
def test_mixed_list_index():
|
||||
assert el[[1, 'H', 0, 'O']].shape == (2, 3, 4, 4)
|
||||
|
||||
|
||||
def test_int_index():
|
||||
assert fl[5].shape == (2, 3, 4)
|
||||
assert el[-1].shape == (2, 3, 4)
|
||||
|
||||
|
||||
def test_slice_index():
|
||||
assert fl[0:3].shape == (2, 3, 4, 3)
|
||||
assert fl[:].shape == (2, 3, 4, 6)
|
||||
|
||||
assert el[0:3].shape == (2, 3, 4, 3)
|
||||
assert el[:].shape == (2, 3, 4, 4)
|
||||
|
|
Loading…
Reference in New Issue