Compare commits
6 Commits
0a9122507f
...
7df98dda7b
Author | SHA1 | Date |
---|---|---|
|
7df98dda7b | |
|
21c6f3cb72 | |
|
50b32bfa8f | |
|
a04340dd7f | |
|
fe0fd8ec21 | |
|
b8baa14c84 |
10
CITATION.cff
10
CITATION.cff
|
@ -9,11 +9,11 @@ authors:
|
|||
affiliation: "German Aerospace Center (DLR)"
|
||||
address: "Linder Höhe"
|
||||
city: Köln
|
||||
version: v1.1.2
|
||||
version: v1.1.3
|
||||
date-released: "2025-06-24"
|
||||
#identifiers:
|
||||
# - description: This is the collection of archived snapshots of all versions of Gaspype
|
||||
# type: doi
|
||||
# value: ""
|
||||
identifiers:
|
||||
- description: This is the collection of archived snapshots of all versions of Gaspype
|
||||
type: doi
|
||||
value: "10.5281/zenodo.17047601"
|
||||
license: MIT
|
||||
repository-code: "https://github.com/DLR-Institute-of-Future-Fuels/gaspype"
|
||||
|
|
|
@ -10,7 +10,7 @@ import os
|
|||
import sys
|
||||
sys.path.insert(0, os.path.abspath("../src/"))
|
||||
|
||||
project = 'gaspype'
|
||||
project = 'Gaspype'
|
||||
copyright = '2025, Nicolas Kruse'
|
||||
author = 'Nicolas Kruse'
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ p = 1e5 # Pa
|
|||
fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2')
|
||||
feed_fuel = gp.fluid({'H2O': 2, 'CO2': 1}, fs)
|
||||
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel)[['C' ,'O']] * [-1/2, 1/2])
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel).get_n(['C' ,'O']) * [-1/2, 1/2])
|
||||
|
||||
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv * utilization * air_dilution
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@ p = 1e5 # Pa
|
|||
fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2')
|
||||
feed_fuel = gp.fluid({'CH4': 1, 'H2O': 0.1}, fs)
|
||||
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel)[['H', 'C' ,'O']] * [1/4, 1, -1/2])
|
||||
o2_full_conv = np.sum(gp.elements(feed_fuel).get_n(['H', 'C' ,'O']) * [1/4, 1, -1/2])
|
||||
|
||||
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv * fuel_utilization / air_utilization
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[project]
|
||||
name = "gaspype"
|
||||
version = "1.1.2"
|
||||
version = "1.1.3"
|
||||
authors = [
|
||||
{ name="Nicolas Kruse", email="nicolas.kruse@dlr.de" },
|
||||
]
|
||||
|
@ -18,9 +18,10 @@ dependencies = [
|
|||
]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/DLR-Institute-of-Future-Fuels/gaspype"
|
||||
Homepage = "https://dlr-institute-of-future-fuels.github.io/gaspype/"
|
||||
documentation = "https://dlr-institute-of-future-fuels.github.io/gaspype/api/"
|
||||
Repository = "https://github.com/DLR-Institute-of-Future-Fuels/gaspype.git"
|
||||
Issues = "https://github.com/DLR-Institute-of-Future-Fuels/gaspype/issues"
|
||||
documentation = "https://dlr-institute-of-future-fuels.github.io/gaspype/"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=61.0", "wheel"]
|
||||
|
|
|
@ -7,7 +7,7 @@ from gaspype._phys_data import atomic_weights, db_reader
|
|||
import re
|
||||
import pkgutil
|
||||
from .constants import R, epsy, p0
|
||||
from .typing import FloatArray, NDFloat, Shape
|
||||
from .typing import FloatArray, NDFloat, Shape, ArrayIndices
|
||||
|
||||
T = TypeVar('T', 'fluid', 'elements')
|
||||
|
||||
|
@ -483,6 +483,28 @@ class fluid:
|
|||
assert set(species) <= set(self.fs.species), f'Species {", ".join([s for s in species if s not in self.fs.species])} is/are not part of the fluid system'
|
||||
return self.array_fractions[..., [self.fs.species.index(k) for k in species]]
|
||||
|
||||
def get_n(self, species: str | list[str] | None = None) -> FloatArray:
|
||||
"""Get molar amount of fluid species
|
||||
|
||||
Args:
|
||||
species: A single species name, a list of species names or None for
|
||||
returning the amount of all species
|
||||
|
||||
Returns:
|
||||
Returns an array of floats with the molar amount of the species.
|
||||
If the a single species name is provided the return float array has
|
||||
the same dimensions as the fluid type. If a list or None is provided
|
||||
the return array has an additional dimension for the species.
|
||||
"""
|
||||
if not species:
|
||||
return self.array_composition
|
||||
elif isinstance(species, str):
|
||||
assert species in self.fs.species, f'Species {species} is not part of the fluid system'
|
||||
return self.array_composition[..., self.fs.species.index(species)]
|
||||
else:
|
||||
assert set(species) <= set(self.fs.species), f'Species {", ".join([s for s in species if s not in self.fs.species])} is/are not part of the fluid system'
|
||||
return self.array_composition[..., [self.fs.species.index(k) for k in species]]
|
||||
|
||||
def __add__(self, other: T) -> T:
|
||||
return array_operation(self, other, np.add)
|
||||
|
||||
|
@ -510,16 +532,21 @@ class fluid:
|
|||
# def __array__(self) -> FloatArray:
|
||||
# return self.array_composition
|
||||
|
||||
def __getitem__(self, key: str | int | list[str] | list[int] | slice) -> FloatArray:
|
||||
@overload
|
||||
def __getitem__(self, key: str) -> FloatArray:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: ArrayIndices) -> 'fluid':
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: str | ArrayIndices) -> Any:
|
||||
if isinstance(key, str):
|
||||
assert key in self.fs.species, f'Species {key} is not part of the fluid system'
|
||||
return self.array_composition[..., self.fs.species.index(key)]
|
||||
elif isinstance(key, (slice, int)):
|
||||
return self.array_composition[..., key]
|
||||
else:
|
||||
mset = set(self.fs.species) | set(range(len(self.fs.species)))
|
||||
assert set(key) <= mset, f'Species {", ".join([str(s) for s in key if s not in mset])} is/are not part of the fluid system'
|
||||
return self.array_composition[..., [self.fs.species.index(k) if isinstance(k, str) else k for k in key]]
|
||||
key_tuple = key if isinstance(key, tuple) else (key,)
|
||||
return fluid(self.array_composition[(*key_tuple, slice(None))], self.fs)
|
||||
|
||||
def __iter__(self) -> Iterator[dict[str, float]]:
|
||||
assert len(self.shape) < 2, 'Cannot iterate over species with more than one dimension'
|
||||
|
@ -614,6 +641,28 @@ class elements:
|
|||
"""
|
||||
return np.sum(self.array_elemental_composition * self.fs.array_atomic_mass, axis=-1, dtype=NDFloat)
|
||||
|
||||
def get_n(self, elemental_species: str | list[str] | None = None) -> FloatArray:
|
||||
"""Get molar amount of elements
|
||||
|
||||
Args:
|
||||
elemental_species: A single element name, a list of element names or None for
|
||||
returning the amount of all element
|
||||
|
||||
Returns:
|
||||
Returns an array of floats with the molar amount of the elements.
|
||||
If the a single element name is provided the return float array has
|
||||
the same dimensions as the fluid type. If a list or None is provided
|
||||
the return array has an additional dimension for the elements.
|
||||
"""
|
||||
if not elemental_species:
|
||||
return self.array_elemental_composition
|
||||
elif isinstance(elemental_species, str):
|
||||
assert elemental_species in self.fs.elements, f'Element {elemental_species} is not part of the fluid system'
|
||||
return self.array_elemental_composition[..., self.fs.elements.index(elemental_species)]
|
||||
else:
|
||||
assert set(elemental_species) <= set(self.fs.elements), f'Elements {", ".join([s for s in elemental_species if s not in self.fs.elements])} is/are not part of the fluid system'
|
||||
return self.array_elemental_composition[..., [self.fs.elements.index(k) for k in elemental_species]]
|
||||
|
||||
def __add__(self, other: 'fluid | elements') -> 'elements':
|
||||
return array_operation(self, other, np.add)
|
||||
|
||||
|
@ -639,16 +688,21 @@ class elements:
|
|||
def __array__(self) -> FloatArray:
|
||||
return self.array_elemental_composition
|
||||
|
||||
def __getitem__(self, key: str | int | list[str] | list[int] | slice) -> FloatArray:
|
||||
@overload
|
||||
def __getitem__(self, key: str) -> FloatArray:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: ArrayIndices) -> 'elements':
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: str | ArrayIndices) -> Any:
|
||||
if isinstance(key, str):
|
||||
assert key in self.fs.elements, f'Element {key} is not part of the fluid system'
|
||||
return self.array_elemental_composition[..., self.fs.elements.index(key)]
|
||||
elif isinstance(key, (slice, int)):
|
||||
return self.array_elemental_composition[..., key]
|
||||
else:
|
||||
mset = set(self.fs.elements) | set(range(len(self.fs.elements)))
|
||||
assert set(key) <= mset, f'Elements {", ".join([str(s) for s in key if s not in mset])} is/are not part of the fluid system'
|
||||
return self.array_elemental_composition[..., [self.fs.elements.index(k) if isinstance(k, str) else k for k in key]]
|
||||
key_tuple = key if isinstance(key, tuple) else (key,)
|
||||
return elements(self.array_elemental_composition[(*key_tuple, slice(None))], self.fs)
|
||||
|
||||
def __iter__(self) -> Iterator[dict[str, float]]:
|
||||
assert len(self.shape) < 2, 'Cannot iterate over elements with more than one dimension'
|
||||
|
|
|
@ -1,6 +1,10 @@
|
|||
from numpy import float64
|
||||
from numpy.typing import NDArray
|
||||
from typing import Sequence
|
||||
from types import EllipsisType
|
||||
|
||||
Shape = tuple[int, ...]
|
||||
NDFloat = float64
|
||||
FloatArray = NDArray[NDFloat]
|
||||
ArrayIndex = int | slice | None | EllipsisType | Sequence[int]
|
||||
ArrayIndices = ArrayIndex | tuple[ArrayIndex, ...]
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
import cantera as ct
|
||||
import numpy as np
|
||||
import time
|
||||
import gaspype as gp
|
||||
|
||||
gas = ct.Solution("gri30.yaml")
|
||||
composition = {"H2": 0.3, "H2O": 0.3, "N2": 0.4}
|
||||
|
||||
n_species = gas.n_species
|
||||
n_states = 1_000_000
|
||||
|
||||
# Random temperatures and pressures
|
||||
temperatures = np.linspace(300.0, 2500.0, n_states)
|
||||
pressures = np.full(n_states, ct.one_atm)
|
||||
|
||||
# Create a SolutionArray with many states at once
|
||||
states = ct.SolutionArray(gas, len(temperatures))
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Vectorized assignment
|
||||
t0 = time.perf_counter()
|
||||
states.TPX = temperatures, pressures, composition
|
||||
cp_values = states.cp_mole
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized cantera)")
|
||||
print("First 5 Cp values (J/mol-K):", cp_values[:5] / 1000)
|
||||
|
||||
|
||||
# Vectorized fluid creation
|
||||
fluid = gp.fluid(composition)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Benchmark: calculate Cp for all states at once
|
||||
t0 = time.perf_counter()
|
||||
cp_values = fluid.get_cp(t=temperatures)
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized Gaspype)")
|
||||
print("First 5 Cp values (J/mol·K):", cp_values[:5])
|
|
@ -0,0 +1,55 @@
|
|||
import cantera as ct
|
||||
import numpy as np
|
||||
import time
|
||||
import gaspype as gp
|
||||
|
||||
gas = ct.Solution("gri30.yaml")
|
||||
n_species = gas.n_species
|
||||
n_states = 1_000_000
|
||||
|
||||
# Random temperatures and pressures
|
||||
temperatures = np.linspace(300.0, 2500.0, n_states)
|
||||
pressures = np.full(n_states, ct.one_atm)
|
||||
|
||||
# Generate random compositions for H2, H2O, N2
|
||||
rng = np.random.default_rng(seed=42)
|
||||
fractions = rng.random((n_states, 3))
|
||||
fractions /= fractions.sum(axis=1)[:, None] # normalize
|
||||
|
||||
# Convert to full 53-species mole fraction array
|
||||
X = np.zeros((n_states, n_species))
|
||||
X[:, gas.species_index('H2')] = fractions[:, 0]
|
||||
X[:, gas.species_index('H2O')] = fractions[:, 1]
|
||||
X[:, gas.species_index('N2')] = fractions[:, 2]
|
||||
|
||||
# Build SolutionArray
|
||||
states = ct.SolutionArray(gas, n_states)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Vectorized assignment
|
||||
t0 = time.perf_counter()
|
||||
states.TPX = temperatures, pressures, X
|
||||
cp_values = states.cp_mole
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized cantera)")
|
||||
print("First 5 Cp values (J/mol-K):", cp_values[:5] / 1000)
|
||||
|
||||
|
||||
# Vectorized fluid creation
|
||||
fluid = (
|
||||
gp.fluid({'H2': 1}) * fractions[:, 0]
|
||||
+ gp.fluid({'H2O': 1}) * fractions[:, 1]
|
||||
+ gp.fluid({'N2': 1}) * fractions[:, 2]
|
||||
)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# Benchmark: calculate Cp for all states at once
|
||||
t0 = time.perf_counter()
|
||||
cp_values = fluid.get_cp(t=temperatures)
|
||||
elapsed = time.perf_counter() - t0
|
||||
|
||||
print(f"Computed {n_states} Cp values in {elapsed:.4f} seconds (vectorized Gaspype)")
|
||||
print("First 5 Cp values (J/mol·K):", cp_values[:5])
|
|
@ -0,0 +1,54 @@
|
|||
import cantera as ct
|
||||
import gaspype as gp
|
||||
import numpy as np
|
||||
import time
|
||||
from gaspype import fluid_system
|
||||
|
||||
# -----------------------
|
||||
# Settings
|
||||
# -----------------------
|
||||
n_temps = 1000
|
||||
temps_C = np.linspace(300, 1000, n_temps) # °C
|
||||
temperatures = temps_C + 273.15 # K
|
||||
pressure = 101325 # Pa (1 atm)
|
||||
|
||||
composition = {"CH4": 0.8, "H2O": 0.2}
|
||||
species_to_track = ["CH4", "H2O", "CO", "CO2", "H2", "O2"]
|
||||
|
||||
# -----------------------
|
||||
# Cantera benchmark
|
||||
# -----------------------
|
||||
gas = ct.Solution("gri30.yaml")
|
||||
gas.TPX = temperatures[0], pressure, composition
|
||||
|
||||
eq_cantera = np.zeros((n_temps, len(species_to_track)))
|
||||
|
||||
time.sleep(0.5)
|
||||
t0 = time.perf_counter()
|
||||
for i, T in enumerate(temperatures):
|
||||
gas.TP = T, pressure
|
||||
gas.equilibrate('TP')
|
||||
eq_cantera[i, :] = [gas.X[gas.species_index(s)] for s in species_to_track]
|
||||
elapsed_cantera = time.perf_counter() - t0
|
||||
print(f"Cantera: {elapsed_cantera:.4f} s")
|
||||
|
||||
# -----------------------
|
||||
# Gaspype benchmark
|
||||
# -----------------------
|
||||
# Construct the fluid with composition and tracked species
|
||||
fluid = gp.fluid(composition, fs=fluid_system(species_to_track))
|
||||
|
||||
time.sleep(0.5)
|
||||
t0 = time.perf_counter()
|
||||
eq_gaspype = gp.equilibrium(fluid, t=temperatures, p=pressure)
|
||||
elapsed_gaspype = time.perf_counter() - t0
|
||||
print(f"Gaspype: {elapsed_gaspype:.4f} s")
|
||||
|
||||
# -----------------------
|
||||
# Compare first 5 results
|
||||
# -----------------------
|
||||
print("First 5 equilibrium compositions (mole fractions):")
|
||||
for i in range(5):
|
||||
print(f"T = {temperatures[i]:.1f} K")
|
||||
print(" Cantera:", eq_cantera[i])
|
||||
print(" Gaspype :", eq_gaspype.array_composition[i])
|
|
@ -12,28 +12,28 @@ def test_str_index():
|
|||
assert el['C'].shape == (2, 3, 4)
|
||||
|
||||
|
||||
def test_str_list_index():
|
||||
assert fl[['CO2', 'H2', 'CO']].shape == (2, 3, 4, 3)
|
||||
assert el[['C', 'H', 'O']].shape == (2, 3, 4, 3)
|
||||
def test_single_axis_int_index():
|
||||
assert fl[0].shape == (3, 4)
|
||||
assert fl[1].shape == (3, 4)
|
||||
assert el[1].shape == (3, 4)
|
||||
assert el[0].shape == (3, 4)
|
||||
|
||||
|
||||
def test_int_list_index():
|
||||
assert fl[[1, 2, 0, 5]].shape == (2, 3, 4, 4)
|
||||
assert el[[1, 2, 0, 3]].shape == (2, 3, 4, 4)
|
||||
def test_single_axis_int_list():
|
||||
assert fl[:, [0, 1]].shape == (2, 2, 4)
|
||||
assert el[:, [0, 1]].shape == (2, 2, 4)
|
||||
|
||||
|
||||
def test_mixed_list_index():
|
||||
assert el[[1, 'H', 0, 'O']].shape == (2, 3, 4, 4)
|
||||
|
||||
|
||||
def test_int_index():
|
||||
assert fl[5].shape == (2, 3, 4)
|
||||
assert el[-1].shape == (2, 3, 4)
|
||||
|
||||
|
||||
def test_slice_index():
|
||||
assert fl[0:3].shape == (2, 3, 4, 3)
|
||||
assert fl[:].shape == (2, 3, 4, 6)
|
||||
|
||||
assert el[0:3].shape == (2, 3, 4, 3)
|
||||
assert el[:].shape == (2, 3, 4, 4)
|
||||
def test_multi_axis_int_index():
|
||||
assert fl[0, 1].shape == (4,)
|
||||
assert fl[0, 1, 2].shape == tuple()
|
||||
assert fl[0, 2].shape == (4,)
|
||||
assert fl[:, 2, :].shape == (2, 4)
|
||||
assert fl[0, [1, 2]].shape == (2, 4)
|
||||
assert fl[..., 0].shape == (2, 3)
|
||||
assert el[0, 1].shape == (4,)
|
||||
assert el[0, 1, 2].shape == tuple()
|
||||
assert el[0, 2].shape == (4,)
|
||||
assert el[:, 2, :].shape == (2, 4)
|
||||
assert el[0, [1, 2]].shape == (2, 4)
|
||||
assert el[..., 0].shape == (2, 3)
|
||||
|
|
Loading…
Reference in New Issue