Merge pull request #11 from DLR-Institute-of-Future-Fuels/dev

Performance improvment by implementation of a custion solver, dropping the scipy dependency
This commit is contained in:
Nicolas Kruse 2025-11-26 15:30:29 +01:00 committed by GitHub
commit cdf2533b26
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 141 additions and 49 deletions

View File

@ -1,4 +1,4 @@
cff-version: 1.1.0
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
title: Gaspype
abstract: Gaspype is a performant library for thermodynamic calculations with ideal gases
@ -9,11 +9,11 @@ authors:
affiliation: "German Aerospace Center (DLR)"
address: "Linder Höhe"
city: Köln
version: v1.1.3
version: v1.1.4
date-released: "2025-06-24"
#identifiers:
# - description: This is the collection of archived snapshots of all versions of Gaspype
# type: doi
# value: ""
identifiers:
- description: This is the collection of archived snapshots of all versions of Gaspype
type: doi
value: "10.5281/zenodo.17047601"
license: MIT
repository-code: "https://github.com/DLR-Institute-of-Future-Fuels/gaspype"

View File

@ -37,7 +37,7 @@ ax.set_ylabel("molar fraction")
ax.set_ylim(0, 1.1)
#ax.set_xlim(0, 100)
ax.plot(ratio, equilibrium_h2o.get_x())
ax.legend(fs.active_species)
ax.legend(fs.species)
```
Equilibrium calculation for methane CO2 mixtures:
@ -56,5 +56,5 @@ ax.set_ylabel("molar fraction")
ax.set_ylim(0, 1.1)
#ax.set_xlim(0, 100)
ax.plot(ratio, equilibrium_co2.get_x())
ax.legend(fs.active_species)
ax.legend(fs.species)
```

View File

@ -1,6 +1,6 @@
[project]
name = "gaspype"
version = "1.1.3"
version = "1.1.4"
authors = [
{ name="Nicolas Kruse", email="nicolas.kruse@dlr.de" },
]
@ -14,7 +14,6 @@ classifiers = [
]
dependencies = [
"numpy>2.0.0",
"scipy>1.12.0",
]
[project.urls]
@ -42,7 +41,6 @@ dev = [
"cantera",
"pyyaml>=6.0.1",
"types-PyYAML",
"scipy-stubs",
"matplotlib"
]
doc_build = [

View File

@ -2,7 +2,7 @@ import numpy as np
from numpy.typing import NDArray
from typing import Sequence, Any, TypeVar, Iterator, overload, Callable
from math import log as ln, ceil
from scipy.linalg import null_space
from ._numerics import null_space
from gaspype._phys_data import atomic_weights, db_reader
import re
import pkgutil
@ -90,7 +90,7 @@ class fluid_system:
self._t_offset = int(t_min)
self.species = species
self.active_species = species
self.active_species = species # for backward compatibility
element_compositions: list[dict[str, int]] = list()
for i, s in enumerate(species):
@ -220,7 +220,7 @@ class fluid:
The array can be multidimensional, the size of the last dimension
must match the number of species defined for the fluid_system.
The indices of the last dimension correspond to the indices in
the active_species list of the fluid_system.
the species list of the fluid_system.
fs: Reference to a fluid_system. Is optional if composition is
defined by a dict. If not specified a new fluid_system with
the components from the dict is created.
@ -585,7 +585,7 @@ class elements:
The array can be multidimensional, the size of the last dimension
must match the number of elements used in the fluid_system.
The indices of the last dimension correspond to the indices in
the active_species list of the fluid_system.
the species list of the fluid_system.
fs: Reference to a fluid_system.
shape: Tuple or list for the dimensions the fluid array. Can
only be used if composition argument is a dict. Otherwise

21
src/gaspype/_numerics.py Normal file
View File

@ -0,0 +1,21 @@
import numpy as np
from .typing import FloatArray
def null_space(A: FloatArray) -> FloatArray:
"""
Compute an orthonormal basis for the null space of A using NumPy SVD.
Args:
A: Input matrix of shape (m, n)
Return:
Null space vectors as columns, shape (n, n - rank)
"""
u, s, vh = np.linalg.svd(A, full_matrices=True)
M, N = u.shape[0], vh.shape[1]
rcond = np.finfo(s.dtype).eps * max(M, N)
tol = np.amax(s, initial=0.) * rcond
num = np.sum(s > tol, dtype=int)
Q = vh[num:, :].T.conj()
return Q

View File

@ -1,10 +1,19 @@
from typing import Literal, Any
from scipy.optimize import minimize, root
from typing import Literal, Any, TYPE_CHECKING
import numpy as np
from ._main import elements, fluid, fluid_system
from .typing import NDFloat, FloatArray
from .constants import p0, epsy
if TYPE_CHECKING:
def minimize(*a: Any, **b: Any) -> dict[str, FloatArray]:
...
else:
try:
from scipy.optimize import minimize
except ImportError:
def minimize(*a, **b):
raise ImportError('scipy is required for the "gibs minimization" solver')
def set_solver(solver: Literal['gibs minimization', 'system of equations']) -> None:
"""
@ -13,8 +22,7 @@ def set_solver(solver: Literal['gibs minimization', 'system of equations']) -> N
Solvers:
- **system of equations** (default): Finds the root for a system of
equations covering a minimal set of equilibrium equations and elemental balance.
The minimal set of equilibrium equations is derived by SVD using the null_space
implementation of scipy.
The minimal set of equilibrium equations is derived by SVD calculating null space.
- **gibs minimization**: Minimizes the total Gibbs Enthalpy while keeping
the elemental composition constant using the SLSQP implementation of scipy
@ -60,7 +68,7 @@ def equilibrium_gmin(fs: fluid_system, element_composition: FloatArray, t: float
start_composition_array = np.ones_like(fs.species, dtype=float)
sol = np.array(minimize(gibbs_rt, start_composition_array, args=(grt, p_rel), method='SLSQP',
bounds=bnds, constraints=cons, options={'maxiter': 2000, 'ftol': 1e-12})['x'], dtype=NDFloat) # type: ignore
bounds=bnds, constraints=cons, options={'maxiter': 2000, 'ftol': 1e-12})['x'], dtype=NDFloat)
return sol
@ -72,7 +80,6 @@ def equilibrium_eq(fs: fluid_system, element_composition: FloatArray, t: float,
element_norm_log = np.log(element_norm + epsy)
a = fs.array_stoichiometric_coefficients
a_sum = np.sum(a)
el_matrix = fs.array_species_elements.T
# Log equilibrium constants for each reaction equation
@ -82,42 +89,49 @@ def equilibrium_eq(fs: fluid_system, element_composition: FloatArray, t: float,
bp = b - np.sum(a * np.log(p / p0), axis=1)
# Calculating the maximum possible amount for each species based on the elements
species_max = np.min(element_norm / (fs.array_species_elements + epsy), axis=1)
logn_start = np.log(species_max + epsy)
species_max = np.min((element_norm + epsy) / (fs.array_species_elements + epsy), axis=1)
species_max_log = np.log(species_max + epsy)
# global count
# count = 0
weighting = 100
# Prepare constant arrays
j_eq_eye = np.eye(len(species_max))
j_eq_ones = np.ones((len(species_max), 1))
def residuals(logn: FloatArray) -> tuple[FloatArray, FloatArray]:
# global count
# count += 1
# print('------', count)
# assert count < 100
n = np.exp(logn)
n: FloatArray = np.exp(logn) # n is the molar amount normalized by el_max
n_sum = np.sum(n)
# Residuals from equilibrium equations:
resid_eq = np.dot(a, logn - np.log(n_sum)) - bp
resid_eq = a @ (logn - np.log(n_sum)) - bp
# Jacobian:
j_eq = a - a_sum * n / n_sum
# Jacobian for equilibrium equations:
j_eq = a @ (j_eq_eye - j_eq_ones * n / np.sum(n))
# Residuals from elemental balance:
el_sum = np.dot(el_matrix, n)
resid_ab = weighting * (np.log(el_sum) - element_norm_log)
el_sum_norm = np.dot(el_matrix, n) + epsy
resid_ab = np.log(el_sum_norm) - element_norm_log
#print(f'* resid_eq: {resid_eq} resid_ab: {resid_ab} {element_norm}')
# print(el_sum, element_norm)
# Jacobian
j_ab = weighting * el_matrix * n / el_sum[:, np.newaxis]
# Jacobian for elemental balance:
j_ab = el_matrix * n / el_sum_norm[:, None]
return (np.hstack([resid_eq, resid_ab]), np.concatenate([j_eq, j_ab], axis=0))
ret = root(residuals, logn_start, jac=True, tol=1e-10)
n = np.exp(np.array(ret['x'], dtype=NDFloat))
# print(ret)
logn: FloatArray = species_max_log # Set start values
for i in range(30):
rF, J = residuals(logn)
delta = np.linalg.solve(J, -rF)
logn = logn + delta
logn = np.minimum(logn, species_max_log + 1)
#print(f'{i} F: {np.linalg.norm(rF):.5f} lognmin={np.min(logn):.3f}, lognmax={np.max(logn):.3f}, delta={np.linalg.norm(delta):.3f} logn=')
if np.linalg.norm(rF) < 1e-10:
#print(f'Converged in {i} iterations')
break
n = np.exp(logn)
return n * el_max

View File

@ -44,6 +44,10 @@ eq_gaspype = gp.equilibrium(fluid, t=temperatures, p=pressure)
elapsed_gaspype = time.perf_counter() - t0
print(f"Gaspype: {elapsed_gaspype:.4f} s")
# Check if elemental balance of result is correct
el_err = np.sum((gp.elements(eq_gaspype) - gp.elements(fluid)).get_n()**2)
assert np.all(el_err < 1e-20)
# -----------------------
# Compare first 5 results
# -----------------------

25
tests/test_equalibrium.py Normal file
View File

@ -0,0 +1,25 @@
import gaspype as gp
def test_single_equilibrium():
# Compare equilibrium calculations to Cantera results
# gp.set_solver('system of equations')
# gp.set_solver('gibs minimization')
# fs = gp.fluid_system(['CH4', 'C2H6', 'C3H8', 'H2O', 'H2', 'CO2', 'CO', 'O2'])
fs = gp.fluid_system(['CH4', 'H2O', 'H2', 'CO2', 'CO', 'O2'])
# fs = gp.fluid_system([s for s in flow1.species_names if s in gps])
composition = gp.elements({'H': 2, 'O': 0, 'C': 0}, fs)
t = 1495 + 273.15 # K
p = 1e5 # Pa
fl = gp.equilibrium(composition, t, p)
print(fl)
if __name__ == "__main__":
test_single_equilibrium()

View File

@ -55,6 +55,7 @@ def test_nh3_data():
def test_equilibrium():
# Compare equilibrium calculations to Cycle-Tempo results
df = pd.read_csv('tests/test_data/cycle_temp_matlab_ref.csv', sep=';', decimal=',').fillna(0)
#gp.set_solver('gibs minimization')
fs = gp.fluid_system(['CH4', 'C2H6', 'C3H8', 'C4H10,n-butane', 'H2O', 'H2', 'CO2', 'CO'])
for index, row in df.iterrows():
@ -84,7 +85,7 @@ def test_equilibrium():
result_values = gp.equilibrium(fl, t, p).array_fractions
print(index, gp.get_solver(), '----')
print(molar_comp)
print('Species: ' + ''.join(f"{s:14}" for s in fs.species))
outp(result_values, 'Under test: ')
outp(reference_values, 'Reference: ')
@ -123,3 +124,7 @@ def test_carbon():
assert result_values > 0.9
else:
assert result_values < 1.1
if __name__ == '__main__':
test_equilibrium()

View File

@ -28,14 +28,14 @@ def test_equilibrium_cantera():
flow1 = ct.Solution('gri30.yaml') # type: ignore
ct_results = []
comp = (composition.array_fractions[i, j] for i in range(composition.shape[0]) for j in range(composition.shape[1]))
comp = [composition.array_fractions[i, j] for i in range(composition.shape[0]) for j in range(composition.shape[1])]
for c in comp:
comp_dict = {s: v for s, v in zip(fs.species, c)}
flow1.TP = t, p
flow1.X = comp_dict
flow1.equilibrate('TP') # type: ignore
indeces = [i for flsn in fs.active_species for i, sn in enumerate(flow1.species_names) if flsn == sn] # type: ignore
indeces = [i for flsn in fs.species for i, sn in enumerate(flow1.species_names) if flsn == sn] # type: ignore
ct_results.append(flow1.X[indeces]) # type: ignore
#if flow1.X[indeces][0] > 0.01:
@ -45,8 +45,33 @@ def test_equilibrium_cantera():
deviations = np.abs(gp_result_array - ct_result_array)
for dev, gp_comp_result, ct_comp_result in zip(deviations, gp_result_array, ct_result_array):
print(f"Composition: {gp_comp_result} / {ct_comp_result}")
for dev, gp_comp_result, ct_comp_result, c in zip(deviations, gp_result_array, ct_result_array, comp):
comp_dict = {s: v for s, v in zip(fs.species, c)}
print(f"Inp. Composition: {comp_dict}")
print(f"Res. Composition: {gp_comp_result}")
print(f"Ref. Composition: {ct_comp_result}")
print("---")
assert np.all(dev < 0.04), f"Deviateion: {dev}"
assert np.mean(deviations) < 2e-4
def test_cantera():
t = 1495 + 273.15 # K
p = 1e5 # Pa
flow1 = ct.Solution('gri30.yaml') # type: ignore
flow1.TP = t, p
inp_comp = {'CH4': 0.0, 'H2O': 0.0, 'H2': 0.9508196721311476, 'CO2': 0.0, 'CO': 0.0, 'O2': 0.04918032786885246}
flow1.X = inp_comp
flow1.equilibrate('TP') # type: ignore
results: dict[str, float] = {sn: float(flow1.X[i]) for flsn in inp_comp for i, sn in enumerate(flow1.species_names) if flsn == sn} # type: ignore
print(inp_comp)
print(results)
if __name__ == "__main__":
test_equilibrium_cantera()