gaspype/examples/soec_syngas.md

118 lines
3.4 KiB
Markdown
Raw Normal View History

# SOEC Co-Electrolysis
This example shows a 1D isothermal SOEC (Solid oxide electrolyzer cell) model.
Converting CO2 and H2 into syngas.
The operating parameters chosen here are not necessary realistic. Under the example
condition the formation of solid carbon is very likely.
2025-06-06 07:02:52 +00:00
```python
import gaspype as gp
from gaspype.constants import R, F
import numpy as np
import matplotlib.pyplot as plt
```
Calculation of the local equilibrium compositions on the fuel and air
side in counter flow along the fuel flow direction:
```python
utilization = 0.95
air_dilution = 0.2
t = 700 + 273.15 # K
p = 1e5 # Pa
fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2')
feed_fuel = gp.fluid({'H2O': 2, 'CO2': 1}, fs)
o2_full_conv = np.sum(gp.elements(feed_fuel)[['C' ,'O']] * [-1/2, 1/2])
feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv * utilization * air_dilution
conversion = np.linspace(0, utilization, 128)
perm_oxygen = o2_full_conv * conversion * gp.fluid({'O2': 1})
fuel_side = gp.equilibrium(feed_fuel - perm_oxygen, t, p)
air_side = gp.equilibrium(feed_air + perm_oxygen, t, p)
```
Plot compositions of the fuel and air side:
```python
fig, ax = plt.subplots()
ax.set_xlabel("Conversion")
ax.set_ylabel("Molar fraction")
ax.plot(conversion, fuel_side.get_x(), '-')
ax.legend(fuel_side.species)
fig, ax = plt.subplots()
ax.set_xlabel("Conversion")
ax.set_ylabel("Molar fraction")
ax.plot(conversion, air_side.get_x(), '-')
ax.legend(air_side.species)
```
Calculation of the oxygen partial pressures:
```python
o2_fuel_side = gp.oxygen_partial_pressure(fuel_side, t, p)
o2_air_side = air_side.get_x('O2') * p
```
Plot oxygen partial pressures:
```python
fig, ax = plt.subplots()
ax.set_xlabel("Conversion")
ax.set_ylabel("Oxygen partial pressure / Pa")
ax.set_yscale('log')
ax.plot(conversion, np.stack([o2_fuel_side, o2_air_side], axis=1), '-')
ax.legend(['o2_fuel_side', 'o2_air_side'])
```
Calculation of the local nernst potential between fuel and air side:
```python
z_O2 = 4
nernst_voltage = R*t / (z_O2*F) * np.log(o2_air_side/o2_fuel_side)
```
Plot nernst potential:
```python
fig, ax = plt.subplots()
ax.set_xlabel("Conversion")
ax.set_ylabel("Voltage / V")
ax.plot(conversion, nernst_voltage, '-')
print(np.min(nernst_voltage))
```
The model uses between each node a constant conversion. Because
current density depends strongly on the position along the cell
the constant conversion does not relate to a constant distance.
![Alt text](../../media/soc_inverted.svg)
To calculate the local current density (**node_current**) as well
as the total cell current (**terminal_current**) the (relative)
physical distance between the nodes (**dz**) must be calculated:
```python
cell_voltage = 1.3 # V
ASR = 0.2 # Ohm*cm²
node_current = (nernst_voltage - cell_voltage) / ASR # mA/cm² (Current density at each node)
current = (node_current[1:] + node_current[:-1]) / 2 # mA/cm² (Average current density between the nodes)
dz = 1/current / np.sum(1/current) # Relative distance between each node
terminal_current = np.sum(current * dz) # mA/cm² (Total cell current per cell area)
print(f'Terminal current: {terminal_current:.2f} A/cm²')
```
Plot the local current density:
```python
z_position = np.concatenate([[0], np.cumsum(dz)]) # Relative position of each node
fig, ax = plt.subplots()
ax.set_xlabel("Relative cell position")
ax.set_ylabel("Current density / A/cm²")
ax.plot(z_position, node_current, '-')
```