diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index fd380f5..9ed21d9 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -107,7 +107,7 @@ jobs: - name: Set up MiKTeX Portable if: steps.cache.outputs.cache-hit != 'true' run: | - Invoke-WebRequest https://miktex.org/download/win/miktexsetup-x64.zip -OutFile miktexsetup-x64.zip + Invoke-WebRequest https://www.nonan.net/w/files/miktexsetup-x64.zip -OutFile miktexsetup-x64.zip Expand-Archive miktexsetup-x64.zip -DestinationPath . .\miktexsetup_standalone.exe --package-set=basic --portable=.\miktex-portable ` --use-registry=no --modify-path=no --quiet ` diff --git a/tests/out/test_html_render1.html b/tests/out/test_html_render1.html index a8b8596..c84f6ab 100644 --- a/tests/out/test_html_render1.html +++ b/tests/out/test_html_render1.html @@ -112,7 +112,8 @@ -

Thermal Conductivity of Mixtures

+
+

Thermal Conductivity of Mixtures

The determination of the thermal conductivity of gas mixtures is a central aspect of modeling transport phenomena, particularly in high-temperature and high-pressure processes. Among the most established approaches is the empirical equation introduced by Wassiljewa, which was @@ -1689,12 +1690,12 @@ z - - + @@ -1730,7 +1731,7 @@ z - + @@ -1770,7 +1771,7 @@ z - + @@ -1805,7 +1806,7 @@ z - + @@ -1851,7 +1852,7 @@ z - + @@ -1906,7 +1907,7 @@ z - + @@ -2240,12 +2241,12 @@ z - - + @@ -2296,7 +2297,7 @@ z - + @@ -2313,7 +2314,7 @@ z - + @@ -2342,7 +2343,7 @@ z - + @@ -2359,7 +2360,7 @@ z - + @@ -2376,7 +2377,7 @@ z - + @@ -2393,7 +2394,7 @@ z - + @@ -2760,7 +2761,7 @@ L 388.649256 158.516825 L 391.928595 134.536585 L 395.207934 101.572135 L 398.487273 53.568 -" clip-path="url(#svg-fig:mixture-p05465abf83)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square"/> +" clip-path="url(#svg-fig:mixture-pb4192541d7)" style="fill: none; stroke: #000000; stroke-width: 1.5; stroke-linecap: square"/> + diff --git a/tests/out/test_html_render1.tex b/tests/out/test_html_render1.tex index 0c5b90f..2af185f 100644 --- a/tests/out/test_html_render1.tex +++ b/tests/out/test_html_render1.tex @@ -7,16 +7,12 @@ This model offers a reliable means of estimating the thermal conductivity of gas on the properties of the pure components and their molar interactions. The thermal conductivity of a gas mixture, denoted by \(\lambda_{\text{mix}}\), can expressed as -shown in equation \ref{eq:lambda-mixture}. -\begin{equation}\label{eq:lambda-mixture}\lambda_{ ext{mix}} = \sum_{i=1}^{n} \frac{x_i \lambda_i}{\sum_{j=1}^{n} x_j \Phi_{ij}}\end{equation} -In this equation, \(x_i\) represents the molar fraction of component \(i\) within the mixture, +shown in equation \ref{eq:lambda-mixture}.\begin{equation}\label{eq:lambda-mixture}\lambda_{ ext{mix}} = \sum_{i=1}^{n} \frac{x_i \lambda_i}{\sum_{j=1}^{n} x_j \Phi_{ij}}\end{equation}In this equation, \(x_i\) represents the molar fraction of component \(i\) within the mixture, while \(\lambda_i\) denotes the thermal conductivity of the pure substance \(i\). The denominator contains the interaction parameter \(\Phi_{ij}\), which describes the influence of component \(j\) on the transport properties of component \(i\). -The interaction parameter \(\Phi_{ij}\) is given by the relation shown in equation \ref{eq:interaction-parameter}. -\begin{equation}\label{eq:interaction-parameter}\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j} \right)^{-1/2} \left[ 1 + \left( \frac{\lambda_i}{\lambda_j} \right)^{1/2} \left( \frac{M_j}{M_i} \right)^{1/4} \right]^2\end{equation} -Here, \(M_i\) and \(M_j\) are the molar masses of the components \(i\) and \(j\), respectively. +The interaction parameter \(\Phi_{ij}\) is given by the relation shown in equation \ref{eq:interaction-parameter}.\begin{equation}\label{eq:interaction-parameter}\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j} \right)^{-1/2} \left[ 1 + \left( \frac{\lambda_i}{\lambda_j} \right)^{1/2} \left( \frac{M_j}{M_i} \right)^{1/4} \right]^2\end{equation}Here, \(M_i\) and \(M_j\) are the molar masses of the components \(i\) and \(j\), respectively. Molar masses and thermal conductivity of the pure substances are listed in table \ref{table:gas-probs}. The structure of this expression illustrates the nonlinear dependence of the interaction term on both the molar mass ratio and the square root of the conductivity ratio of the involved species. diff --git a/tests/out/test_html_render2.html b/tests/out/test_html_render2.html index e6ec940..8ab807d 100644 --- a/tests/out/test_html_render2.html +++ b/tests/out/test_html_render2.html @@ -112,7 +112,8 @@ -

Special characters

+
+

Special characters

ö ä ü Ö Ä Ü ß @ ∆

π ≈ ± ∆ Σ

£ ¥ $ €

@@ -503,7 +504,7 @@ L 142.181053 307.584 L 142.181053 206.208 L 73.832727 206.208 z -" clip-path="url(#svg-fig:auto1-pc47365bf11)" style="fill: #d62728"/> +" clip-path="url(#svg-fig:auto1-p385bf31f88)" style="fill: #d62728"/> +" clip-path="url(#svg-fig:auto1-p385bf31f88)" style="fill: #1f77b4"/> +" clip-path="url(#svg-fig:auto1-p385bf31f88)" style="fill: #d62728"/> +" clip-path="url(#svg-fig:auto1-p385bf31f88)" style="fill: #ff7f0e"/> - - + @@ -648,7 +649,7 @@ z - + @@ -753,7 +754,7 @@ z - + @@ -813,7 +814,7 @@ z - + @@ -909,12 +910,12 @@ z - - + @@ -950,7 +951,7 @@ z - + @@ -990,7 +991,7 @@ z - + @@ -1025,7 +1026,7 @@ z - + @@ -1071,7 +1072,7 @@ z - + @@ -1126,7 +1127,7 @@ z - + @@ -1457,7 +1458,7 @@ z - + @@ -1492,17 +1493,17 @@ z > 150 g/km 4 stars 7.800000 - 1500 kg + 150 kg 250 Nm Line3 110 - 110 g/km + -110 g/km 5 stars 8.500000 - 1400 kg - 280 Nm + 140 kg + 280,8 Nm Line4 @@ -1516,10 +1517,10 @@ z Line5 130 - 13.05 g/km + −13.05 g/km 5 stars 4.200000 - 1700 kg + 17.55 kg 450 Nm diff --git a/tests/out/test_html_render2.tex b/tests/out/test_html_render2.tex index 16284c4..cef762d 100644 --- a/tests/out/test_html_render2.tex +++ b/tests/out/test_html_render2.tex @@ -580,10 +580,10 @@ This line represents a reference to the equation \ref{eq:test1}. \text{Row1} & \text{Row2} & \text{Row3} & \text{Row4} & \text{Row5} & \text{Row6} & \text{Row7} \\ \midrule Line1 & 120 & 12 g/km & 5 stars & 3.500000 & 1850 kg & 600 Nm \\ -Line2 & 95 km/h & {\textgreater} 150 g/km & 4 stars & 7.800000 & 1500 kg & 250 Nm \\ -Line3 & 110 & 110 g/km & 5 stars & 8.500000 & 1400 kg & 280 Nm \\ +Line2 & 95 km/h & {\textgreater} 150 g/km & 4 stars & 7.800000 & 150 kg & 250 Nm \\ +Line3 & 110 & -110 g/km & 5 stars & 8.500000 & 140 kg & 280,8 Nm \\ Line4 & 105 km/h & 1140 g/km & 4.5 stars & 6.900000 & 1600 kg & 320 Nm \\ -Line5 & 130 & 13.05 g/km & 5 stars & 4.200000 & 1700 kg & 450 Nm \\ +Line5 & 130 & -13.05 g/km & 5 stars & 4.200000 & 17.55 kg & 450 Nm \\ \bottomrule \end{tabular} \end{table} \ No newline at end of file diff --git a/tests/out/test_latex_render1.pdf b/tests/out/test_latex_render1.pdf index cef264c..d8fab58 100644 Binary files a/tests/out/test_latex_render1.pdf and b/tests/out/test_latex_render1.pdf differ diff --git a/tests/out/test_latex_render2.pdf b/tests/out/test_latex_render2.pdf index 44d5720..c62d89c 100644 Binary files a/tests/out/test_latex_render2.pdf and b/tests/out/test_latex_render2.pdf differ