# Setup for Tensorflow with GPU Tested for ubuntu-20.04.4 Steps: 1. Prepare setup: git clone https://repos.nonan.net/nicolas/gpu_server_setup.git cd gpu_server_setup 2. Setup driver/CUDA: sudo bash setup_cuda.sh 3. Reboot system: sudo systemctl reboot 4. Setup bcache: sudo bash setup_bcache.sh 5. Setup apps (Python, JupyterHub (Hub is running as root), Tensorflow etc.): sudo bash setup_apps.sh ## Notes ### CUDA Check state of NVIDIA devices (electrical power, temperature, memory etc.): nvidia-smi ### bcache Check bcache performance: cat /sys/block/bcache0/bcache/state cat /sys/block/bcache*/bcache/stats_five_minute/cache_hit_ratio cat /sys/block/bcache*/bcache/stats_hour/cache_hit_ratio Tune bcache (not permanent): echo 64M > /sys/block/bcache0/bcache/sequential_cutoff echo 4096 > /sys/block/bcache0/queue/read_ahead_kb ### Fan-temperature control for GPUs - [NVIDIA GPU-based FAN controller for SUPERMICRO server](https://github.com/skokec/superfans-gpu-controller) - [Modification for combined GPU/CPU temperature control in 1U server](https://repos.nonan.net/nicolas/superfans-gpu-controller) ## For a multiuser setup - [systemdspawner](https://github.com/jupyterhub/systemdspawner) alow for mem_limit