# SOEC with Methane This example shows a 1D isothermal SOEC (Solid oxide electrolyzer cell) model. The operating parameters chosen here are not necessary realistic ```python import gaspype as gp from gaspype import R, F import numpy as np import matplotlib.pyplot as plt ``` Calculation of the local equilibrium compositions on the fuel and air side in counter flow along the fuel flow direction: ```python fuel_utilization = 0.90 air_utilization = 0.5 t = 800 + 273.15 #K p = 1e5 #Pa fs = gp.fluid_system('H2, H2O, O2, CH4, CO, CO2') feed_fuel = gp.fluid({'CH4': 1, 'H2O': 0.1}, fs) o2_full_conv = np.sum(gp.elements(feed_fuel)[['H', 'C' ,'O']] * [1/4, 1, -1/2]) feed_air = gp.fluid({'O2': 1, 'N2': 4}) * o2_full_conv / air_utilization conversion = np.linspace(0, fuel_utilization, 32) perm_oxygen = o2_full_conv * conversion * gp.fluid({'O2': 1}) fuel_side = gp.equilibrium(feed_fuel + perm_oxygen, t, p) air_side = gp.equilibrium(feed_air - perm_oxygen, t, p) ``` Plot compositions of the fuel and air side: ```python fig, ax = plt.subplots() ax.set_xlabel("Conversion") ax.set_ylabel("Molar fraction") ax.plot(conversion, fuel_side.get_x(), '-') ax.legend(fuel_side.species) fig, ax = plt.subplots() ax.set_xlabel("Conversion") ax.set_ylabel("Molar fraction") ax.plot(conversion, air_side.get_x(), '-') ax.legend(air_side.species) ``` Calculation of the oxygen partial pressures: ```python o2_fuel_side = gp.oxygen_partial_pressure(fuel_side, t, p) o2_air_side = air_side.get_x('O2') * p ``` Plot oxygen partial pressures: ```python fig, ax = plt.subplots() ax.set_xlabel("Conversion") ax.set_ylabel("Oxygen partial pressure / Pa") ax.set_yscale('log') ax.plot(conversion, np.stack([o2_fuel_side, o2_air_side], axis=1), '-') ax.legend(['o2_fuel_side', 'o2_air_side']) ``` Calculation of the local nernst potential between fuel and air side: ```python z_O2 = 4 nernst_voltage = R*t / (z_O2*F) * np.log(o2_air_side/o2_fuel_side) ``` #Plot nernst potential: ```python fig, ax = plt.subplots() ax.set_xlabel("Conversion") ax.set_ylabel("Voltage / V") ax.plot(conversion, nernst_voltage, '-') print(np.min(nernst_voltage)) ``` The model uses between each node a constant conversion. Because current density depends strongly on the position along the cell the constant conversion does not relate to a constant distance. ![Alt text](../../media/soc_inverted.svg) To calculate the local current density (**node_current**) as well as the total cell current (**terminal_current**) the (relative) physical distance between the nodes (**dz**) must be calculated: ```python cell_voltage = 0.77 #V ASR = 0.2 #Ohm*cm² node_current = (nernst_voltage - cell_voltage) / ASR # mA/cm² (Current density at each node) current = (node_current[1:] + node_current[:-1]) / 2 # mA/cm² (Average current density between the nodes) dz = 1/current / np.sum(1/current) # Relative distance between each node terminal_current = np.sum(current * dz) # mA/cm² (Total cell current per cell area) print(f'Terminal current: {terminal_current:.2f} A/cm²') ``` Plot the local current density: ```python z_position = np.concatenate([[0], np.cumsum(dz)]) # Relative position of each node fig, ax = plt.subplots() ax.set_xlabel("Relative cell position") ax.set_ylabel("Current density / A/cm²") ax.plot(z_position, node_current, '-') ```