#include "stencil_helper.h" const float PI = 3.14159265358979323846f; const float PI_2 = 1.57079632679489661923f; // pi/2 const double TWO_OVER_PI = 0.63661977236758134308; // 2/pi const double PIO2_HI = 1.57079625129699707031; // pi/2 high part const double PIO2_LO = 7.54978941586159635335e-08; // pi/2 low part float aux_sin(float x) { // convert to double for reduction (better precision) double xd = (double)x; // quadrant index q = nearest integer to x * 2/pi double qd = xd * TWO_OVER_PI; // round to nearest integer (tie to even rounding not guaranteed) int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5)); // range-reduced remainder r = x − q*(pi/2) // use hi/lo parts for pi/2 to reduce error double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO; float r = (float)r_d; // Select function and sign based on quadrant int qm = q & 3; int use_cos = (qm == 1 || qm == 3); int sign = (qm == 0 || qm == 1) ? +1 : -1; float r2 = r * r; if (!use_cos) { // sin(r) polynomial: r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9 const float s3 = -1.6666667163e-1f; const float s5 = 8.3333337680e-3f; const float s7 = -1.9841270114e-4f; const float s9 = 2.7557314297e-6f; float p = ((s9 * r2 + s7) * r2 + s5) * r2 + s3; float result = r + r * r2 * p; return sign * result; } else { // cos(r) polynomial: 1 + c2*r2 + c4*r4 + c6*r6 + c8*r8 const float c2 = -0.5f; const float c4 = 4.1666667908e-2f; const float c6 = -1.3888889225e-3f; const float c8 = 2.4801587642e-5f; float p = ((c8 * r2 + c6) * r2 + c4) * r2 + c2; float result = 1.0f + r2 * p; return sign * result; } } float aux_cos(float x) { // convert to double for reduction (better precision) double xd = (double)x; // quadrant index q = nearest integer to x * 2/pi double qd = xd * TWO_OVER_PI; // round to nearest integer (tie to even rounding not guaranteed) int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5)); // range-reduced remainder r = x − q*(pi/2) // use hi/lo parts for pi/2 to reduce error double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO; float r = (float)r_d; // Select function and sign based on quadrant int qm = q & 3; int use_sin = (qm == 1 || qm == 3); int sign = (qm == 0 || qm == 3) ? +1 : -1; float r2 = r * r; if (use_sin) { // sin(r) polynomial: r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9 const float s3 = -1.6666667163e-1f; const float s5 = 8.3333337680e-3f; const float s7 = -1.9841270114e-4f; const float s9 = 2.7557314297e-6f; float p = ((s9 * r2 + s7) * r2 + s5) * r2 + s3; float result = r + r * r2 * p; return sign * result; } else { // cos(r) polynomial: 1 + c2*r2 + c4*r4 + c6*r6 + c8*r8 const float c2 = -0.5f; const float c4 = 4.1666667908e-2f; const float c6 = -1.3888889225e-3f; const float c8 = 2.4801587642e-5f; float p = ((c8 * r2 + c6) * r2 + c4) * r2 + c2; float result = 1.0f + r2 * p; return sign * result; } } float aux_tan(float x) { // Promote to double for argument reduction (improves precision) double xd = (double)x; double qd = xd * TWO_OVER_PI; // how many half-pi multiples int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5)); // nearest integer // Range reduce: r = x - q*(pi/2) double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO; float r = (float)r_d; // For tan: period is pi, so q mod 2 determines sign int qm = q & 3; int use_cot = (qm == 1 || qm == 3); // tan(x) = ±cot(r) in odd quadrants int sign = (qm == 0 || qm == 2) ? +1 : -1; // Polynomial approximations // sin(r) ≈ r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9 const float s3 = -1.6666667163e-1f; const float s5 = 8.3333337680e-3f; const float s7 = -1.9841270114e-4f; const float s9 = 2.7557314297e-6f; // cos(r) ≈ 1 + c2*r^2 + c4*r^4 + c6*r^6 + c8*r^8 const float c2 = -0.5f; const float c4 = 4.1666667908e-2f; const float c6 = -1.3888889225e-3f; const float c8 = 2.4801587642e-5f; float r2 = r * r; float sin_r = r + r * r2 * (((s9 * r2 + s7) * r2 + s5) * r2 + s3); float cos_r = 1.0f + r2 * (((c8 * r2 + c6) * r2 + c4) * r2 + c2); float t; if (!use_cot) { // tan(r) = sin(r)/cos(r) t = sin_r / cos_r; } else { // cot(r) = cos(r)/sin(r) t = cos_r / sin_r; } // Avoid catastrophic explosion near vertical asymptotes // Clip to a large finite value (~1e8) if (t > 1e8f) t = 1e8f; if (t < -1e8f) t = -1e8f; return sign * t; } float aux_atan(float x) { const float absx = x < 0 ? -x : x; // Coefficients for a rational minimax fit on [0,1] const float a0 = 0.9998660f; const float a1 = -0.3302995f; const float b1 = 0.1801410f; const float b2 = -0.0126492f; float y; if (absx <= 1.0f) { float x2 = x * x; y = x * (a0 + a1 * x2) / (1.0f + b1 * x2 + b2 * x2 * x2); } else { float inv = 1.0f / absx; float x2 = inv * inv; float core = inv * (a0 + a1 * x2) / (1.0f + b1 * x2 + b2 * x2 * x2); y = PI_2 - core; } return x < 0 ? -y : y; } float aux_atan2(float y, float x) { if (x == 0.0f) { if (y > 0.0f) return PI_2; if (y < 0.0f) return -PI_2; return 0.0f; // TODO: undefined } float abs_y = y < 0 ? -y : y; float abs_x = x < 0 ? -x : x; float angle; if (abs_x > abs_y) angle = aux_atan(y / x); else angle = PI_2 - aux_atan(x / y); // Quadrant correction if (x < 0) angle = (y >= 0) ? angle + PI : angle - PI; return angle; } float aux_asin(float x) { if (x > 1.0f) x = 1.0f; if (x < -1.0f) x = -1.0f; const float c3 = 0.16666667f; // ≈ 1/6 const float c5 = 0.07500000f; // ≈ 3/40 const float c7 = 0.04464286f; // ≈ 5/112 float x2 = x * x; float p = x + x * x2 * (c3 + x2 * (c5 + c7 * x2)); return p; }