musl math added

This commit is contained in:
Nicolas 2025-11-12 13:50:33 +01:00 committed by Nicolas Kruse
parent 8413eecdd4
commit f74927c517
3 changed files with 8 additions and 166 deletions

View File

@ -14,19 +14,7 @@ int floor_div(float arg1, float arg2) {
}
float aux_sqrt(float x) {
if (x <= 0.0f) return 0.0f;
// --- Improved initial guess using bit-level trick ---
union { float f; uint32_t i; } conv = { x };
conv.i = (conv.i >> 1) + 0x1fc00000; // better bias constant
float y = conv.f;
// --- Fixed number of Newton-Raphson iterations ---
y = 0.5f * (y + x / y);
y = 0.5f * (y + x / y);
y = 0.5f * (y + x / y); // 3 fixed iterations
return y;
return sqrtf(x);
}
float aux_get_42(float n) {
@ -35,33 +23,10 @@ float aux_get_42(float n) {
float aux_log(float x)
{
union { float f; uint32_t i; } vx = { x };
float e = (float)((vx.i >> 23) & 0xFF) - 127.0f;
vx.i = (vx.i & 0x007FFFFF) | 0x3F800000; // normalized mantissa in [1,2)
float m = vx.f;
// 3rd-degree minimax polynomial approximation of log2(m)
// over [1, 2): log2(m) ≈ p(m) = a*m^3 + b*m^2 + c*m + d
float p = -0.34484843f * m * m * m + 2.02466578f * m * m - 2.67487759f * m + 1.65149613f;
float log2x = e + p;
return log2x * 0.69314718f; // convert log2 → ln
return logf(x);
}
float aux_exp(float x)
{
// Scale by 1/ln(2)
x = x * 1.44269504089f;
float xi = (float)((int)x);
float f = x - xi;
// Polynomial approximation of 2^f for f ∈ [0,1)
float p = 1.0f + f * (0.69314718f + f * (0.24022651f + f * (0.05550411f)));
// Reconstruct exponent
int ei = (int)xi + 127;
if (ei <= 0) ei = 0; else if (ei >= 255) ei = 255;
union { uint32_t i; float f; } v = { (uint32_t)(ei << 23) };
return v.f * p;
return expf(x);
}

View File

@ -1,3 +1,5 @@
#include <math.h>
#if defined(__GNUC__)
#define NOINLINE __attribute__((noinline))
#define STENCIL_START_EX(funcname) \

View File

@ -7,140 +7,15 @@ const double PIO2_HI = 1.57079625129699707031; // pi/2 high part
const double PIO2_LO = 7.54978941586159635335e-08; // pi/2 low part
float aux_sin(float x) {
// convert to double for reduction (better precision)
double xd = (double)x;
// quadrant index q = nearest integer to x * 2/pi
double qd = xd * TWO_OVER_PI;
// round to nearest integer (tie to even rounding not guaranteed)
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5));
// range-reduced remainder r = x q*(pi/2)
// use hi/lo parts for pi/2 to reduce error
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
// Select function and sign based on quadrant
int qm = q & 3;
int use_cos = (qm == 1 || qm == 3);
int sign = (qm == 0 || qm == 1) ? +1 : -1;
float r2 = r * r;
if (!use_cos) {
// sin(r) polynomial: r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9
const float s3 = -1.6666667163e-1f;
const float s5 = 8.3333337680e-3f;
const float s7 = -1.9841270114e-4f;
const float s9 = 2.7557314297e-6f;
float p = ((s9 * r2 + s7) * r2 + s5) * r2 + s3;
float result = r + r * r2 * p;
return sign * result;
} else {
// cos(r) polynomial: 1 + c2*r2 + c4*r4 + c6*r6 + c8*r8
const float c2 = -0.5f;
const float c4 = 4.1666667908e-2f;
const float c6 = -1.3888889225e-3f;
const float c8 = 2.4801587642e-5f;
float p = ((c8 * r2 + c6) * r2 + c4) * r2 + c2;
float result = 1.0f + r2 * p;
return sign * result;
}
return sinf(x);
}
float aux_cos(float x) {
// convert to double for reduction (better precision)
double xd = (double)x;
// quadrant index q = nearest integer to x * 2/pi
double qd = xd * TWO_OVER_PI;
// round to nearest integer (tie to even rounding not guaranteed)
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5));
// range-reduced remainder r = x q*(pi/2)
// use hi/lo parts for pi/2 to reduce error
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
// Select function and sign based on quadrant
int qm = q & 3;
int use_sin = (qm == 1 || qm == 3);
int sign = (qm == 0 || qm == 3) ? +1 : -1;
float r2 = r * r;
if (use_sin) {
// sin(r) polynomial: r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9
const float s3 = -1.6666667163e-1f;
const float s5 = 8.3333337680e-3f;
const float s7 = -1.9841270114e-4f;
const float s9 = 2.7557314297e-6f;
float p = ((s9 * r2 + s7) * r2 + s5) * r2 + s3;
float result = r + r * r2 * p;
return sign * result;
} else {
// cos(r) polynomial: 1 + c2*r2 + c4*r4 + c6*r6 + c8*r8
const float c2 = -0.5f;
const float c4 = 4.1666667908e-2f;
const float c6 = -1.3888889225e-3f;
const float c8 = 2.4801587642e-5f;
float p = ((c8 * r2 + c6) * r2 + c4) * r2 + c2;
float result = 1.0f + r2 * p;
return sign * result;
}
return cosf(x);
}
float aux_tan(float x) {
// Promote to double for argument reduction (improves precision)
double xd = (double)x;
double qd = xd * TWO_OVER_PI; // how many half-pi multiples
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5)); // nearest integer
// Range reduce: r = x - q*(pi/2)
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
// For tan: period is pi, so q mod 2 determines sign
int qm = q & 3;
int use_cot = (qm == 1 || qm == 3); // tan(x) = ±cot(r) in odd quadrants
int sign = (qm == 0 || qm == 2) ? +1 : -1;
// Polynomial approximations
// sin(r) ≈ r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9
const float s3 = -1.6666667163e-1f;
const float s5 = 8.3333337680e-3f;
const float s7 = -1.9841270114e-4f;
const float s9 = 2.7557314297e-6f;
// cos(r) ≈ 1 + c2*r^2 + c4*r^4 + c6*r^6 + c8*r^8
const float c2 = -0.5f;
const float c4 = 4.1666667908e-2f;
const float c6 = -1.3888889225e-3f;
const float c8 = 2.4801587642e-5f;
float r2 = r * r;
float sin_r = r + r * r2 * (((s9 * r2 + s7) * r2 + s5) * r2 + s3);
float cos_r = 1.0f + r2 * (((c8 * r2 + c6) * r2 + c4) * r2 + c2);
float t;
if (!use_cot) {
// tan(r) = sin(r)/cos(r)
t = sin_r / cos_r;
} else {
// cot(r) = cos(r)/sin(r)
t = cos_r / sin_r;
}
// Avoid catastrophic explosion near vertical asymptotes
// Clip to a large finite value (~1e8)
if (t > 1e8f) t = 1e8f;
if (t < -1e8f) t = -1e8f;
return sign * t;
return tanf(x);
}
float aux_atan(float x) {