Code rearranged and split to different files

This commit is contained in:
Nicolas Kruse 2025-10-19 23:24:14 +02:00
parent c55ae827d7
commit 51f6eb1538
18 changed files with 903 additions and 852 deletions

View File

@ -1,802 +1,16 @@
import pkgutil
from typing import Generator, Iterable, Any, TypeVar, overload, TypeAlias
from typing import cast
from . import binwrite as binw
from .stencil_db import stencil_database
from collections import defaultdict, deque
from coparun_module import coparun, read_data_mem
import struct
import platform
NumLike: TypeAlias = 'cpint | cpfloat | cpbool | int | float| bool'
NumLikeAndNet: TypeAlias = 'cpint | cpfloat | cpbool | int | float | bool | Net'
NetAndNum: TypeAlias = 'Net | int | float'
unifloat: TypeAlias = 'cpfloat | float'
uniint: TypeAlias = 'cpint | int'
unibool: TypeAlias = 'cpbool | bool'
TNumber = TypeVar("TNumber", bound='CPNumber')
T = TypeVar("T")
def get_var_name(var: Any, scope: dict[str, Any] = globals()) -> list[str]:
return [name for name, value in scope.items() if value is var]
def stencil_db_from_package(arch: str = 'native', optimization: str = 'O3') -> stencil_database:
if arch == 'native':
arch = platform.machine()
stencil_data = pkgutil.get_data(__name__, f"obj/stencils_{arch}_{optimization}.o")
assert stencil_data, f"stencils_{arch}_{optimization} not found"
return stencil_database(stencil_data)
generic_sdb = stencil_db_from_package()
def transl_type(t: str) -> str:
return {'bool': 'int'}.get(t, t)
class Node:
def __init__(self) -> None:
self.args: list[Net] = []
self.name: str = ''
def __repr__(self) -> str:
return f"Node:{self.name}({', '.join(str(a) for a in self.args) if self.args else (self.value if isinstance(self, InitVar) else '')})"
class Device():
pass
class Net:
def __init__(self, dtype: str, source: Node):
self.dtype = dtype
self.source = source
def __repr__(self) -> str:
names = get_var_name(self)
return f"{'name:' + names[0] if names else 'id:' + str(id(self))[-5:]}"
def __hash__(self) -> int:
return id(self)
class CPNumber(Net):
def __init__(self, dtype: str, source: Node):
self.dtype = dtype
self.source = source
@overload
def __mul__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __mul__(self, other: unifloat) -> 'cpfloat':
...
def __mul__(self, other: NumLike) -> 'CPNumber':
return _add_op('mul', [self, other], True)
@overload
def __rmul__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rmul__(self, other: unifloat) -> 'cpfloat':
...
def __rmul__(self, other: NumLike) -> 'CPNumber':
return _add_op('mul', [self, other], True)
@overload
def __add__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __add__(self, other: unifloat) -> 'cpfloat':
...
def __add__(self, other: NumLike) -> 'CPNumber':
return _add_op('add', [self, other], True)
@overload
def __radd__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __radd__(self, other: unifloat) -> 'cpfloat':
...
def __radd__(self, other: NumLike) -> 'CPNumber':
return _add_op('add', [self, other], True)
@overload
def __sub__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __sub__(self, other: unifloat) -> 'cpfloat':
...
def __sub__(self, other: NumLike) -> 'CPNumber':
return _add_op('sub', [self, other])
@overload
def __rsub__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rsub__(self, other: unifloat) -> 'cpfloat':
...
def __rsub__(self, other: NumLike) -> 'CPNumber':
return _add_op('sub', [other, self])
def __truediv__(self, other: NumLike) -> 'cpfloat':
ret = _add_op('div', [self, other])
assert isinstance(ret, cpfloat)
return ret
def __rtruediv__(self, other: NumLike) -> 'cpfloat':
ret = _add_op('div', [other, self])
assert isinstance(ret, cpfloat)
return ret
@overload
def __floordiv__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __floordiv__(self, other: unifloat) -> 'cpfloat':
...
def __floordiv__(self, other: NumLike) -> 'CPNumber':
return _add_op('floordiv', [self, other])
@overload
def __rfloordiv__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rfloordiv__(self, other: unifloat) -> 'cpfloat':
...
def __rfloordiv__(self, other: NumLike) -> 'CPNumber':
return _add_op('floordiv', [other, self])
def __neg__(self: TNumber) -> TNumber:
return cast(TNumber, _add_op('sub', [cpvalue(0), self]))
def __gt__(self, other: NumLike) -> 'cpbool':
ret = _add_op('gt', [self, other])
return cpbool(ret.source)
def __lt__(self, other: NumLike) -> 'cpbool':
ret = _add_op('gt', [other, self])
return cpbool(ret.source)
def __eq__(self, other: NumLike) -> 'cpbool': # type: ignore
ret = _add_op('eq', [self, other], True)
return cpbool(ret.source)
def __ne__(self, other: NumLike) -> 'cpbool': # type: ignore
ret = _add_op('ne', [self, other], True)
return cpbool(ret.source)
@overload
def __mod__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __mod__(self, other: unifloat) -> 'cpfloat':
...
def __mod__(self, other: NumLike) -> 'CPNumber':
return _add_op('mod', [self, other])
@overload
def __rmod__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rmod__(self, other: unifloat) -> 'cpfloat':
...
def __rmod__(self, other: NumLike) -> 'CPNumber':
return _add_op('mod', [other, self])
@overload
def __pow__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __pow__(self, other: unifloat) -> 'cpfloat':
...
def __pow__(self, other: NumLike) -> 'CPNumber':
return _add_op('pow', [other, self])
@overload
def __rpow__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rpow__(self, other: unifloat) -> 'cpfloat':
...
def __rpow__(self, other: NumLike) -> 'CPNumber':
return _add_op('rpow', [self, other])
def __hash__(self) -> int:
return super().__hash__()
class cpint(CPNumber):
def __init__(self, source: int | Node):
if isinstance(source, Node):
self.source = source
else:
self.source = InitVar(int(source))
self.dtype = 'int'
def __lshift__(self, other: uniint) -> 'cpint':
ret = _add_op('lshift', [self, other])
assert isinstance(ret, cpint)
return ret
def __rlshift__(self, other: uniint) -> 'cpint':
ret = _add_op('lshift', [other, self])
assert isinstance(ret, cpint)
return ret
def __rshift__(self, other: uniint) -> 'cpint':
ret = _add_op('rshift', [self, other])
assert isinstance(ret, cpint)
return ret
def __rrshift__(self, other: uniint) -> 'cpint':
ret = _add_op('rshift', [other, self])
assert isinstance(ret, cpint)
return ret
def __and__(self, other: uniint) -> 'cpint':
ret = _add_op('bwand', [self, other], True)
assert isinstance(ret, cpint)
return ret
def __rand__(self, other: uniint) -> 'cpint':
ret = _add_op('rwand', [other, self], True)
assert isinstance(ret, cpint)
return ret
def __or__(self, other: uniint) -> 'cpint':
ret = _add_op('bwor', [self, other], True)
assert isinstance(ret, cpint)
return ret
def __ror__(self, other: uniint) -> 'cpint':
ret = _add_op('bwor', [other, self], True)
assert isinstance(ret, cpint)
return ret
def __xor__(self, other: uniint) -> 'cpint':
ret = _add_op('bwxor', [self, other], True)
assert isinstance(ret, cpint)
return ret
def __rxor__(self, other: uniint) -> 'cpint':
ret = _add_op('bwxor', [other, self], True)
assert isinstance(ret, cpint)
return ret
class cpfloat(CPNumber):
def __init__(self, source: float | Node | CPNumber):
if isinstance(source, Node):
self.source = source
elif isinstance(source, CPNumber):
self.source = _add_op('cast_float', [source]).source
else:
self.source = InitVar(float(source))
self.dtype = 'float'
class cpbool(cpint):
def __init__(self, source: bool | Node):
if isinstance(source, Node):
self.source = source
else:
self.source = InitVar(bool(source))
self.dtype = 'bool'
class cpvector:
def __init__(self, *value: NumLike):
self.value = value
def __add__(self, other: 'cpvector') -> 'cpvector':
assert len(self.value) == len(other.value)
tup = (a + b for a, b in zip(self.value, other.value))
return cpvector(*(v for v in tup if isinstance(v, CPNumber)))
class InitVar(Node):
def __init__(self, value: int | float):
self.dtype, self.value = _get_data_and_dtype(value)
self.name = 'const_' + self.dtype
self.args = []
class Write(Node):
def __init__(self, input: NetAndNum):
if isinstance(input, Net):
net = input
else:
node = InitVar(input)
net = Net(node.dtype, node)
self.name = 'write_' + transl_type(net.dtype)
self.args = [net]
class Op(Node):
def __init__(self, typed_op_name: str, args: list[Net]):
assert not args or any(isinstance(t, Net) for t in args), 'args parameter must be of type list[Net]'
self.name: str = typed_op_name
self.args: list[Net] = args
def net_from_value(value: Any) -> Net:
vi = InitVar(value)
return Net(vi.dtype, vi)
@overload
def iif(expression: CPNumber, true_result: unibool, false_result: unibool) -> cpbool: # pyright: ignore[reportOverlappingOverload]
...
@overload
def iif(expression: CPNumber, true_result: uniint, false_result: uniint) -> cpint:
...
@overload
def iif(expression: CPNumber, true_result: unifloat, false_result: unifloat) -> cpfloat:
...
@overload
def iif(expression: NumLike, true_result: T, false_result: T) -> T:
...
def iif(expression: Any, true_result: Any, false_result: Any) -> Any:
# TODO: check that input types are matching
alowed_type = cpint | cpfloat | cpbool | int | float | bool
assert isinstance(true_result, alowed_type) and isinstance(false_result, alowed_type), "Result type not supported"
if isinstance(expression, CPNumber):
return (expression != 0) * true_result + (expression == 0) * false_result
else:
return true_result if expression else false_result
def _add_op(op: str, args: list[CPNumber | int | float], commutative: bool = False) -> CPNumber:
arg_nets = [a if isinstance(a, Net) else net_from_value(a) for a in args]
if commutative:
arg_nets = sorted(arg_nets, key=lambda a: a.dtype)
typed_op = '_'.join([op] + [transl_type(a.dtype) for a in arg_nets])
if typed_op not in generic_sdb.stencil_definitions:
raise NotImplementedError(f"Operation {op} not implemented for {' and '.join([a.dtype for a in arg_nets])}")
result_type = generic_sdb.stencil_definitions[typed_op].split('_')[0]
if result_type == 'int':
return cpint(Op(typed_op, arg_nets))
else:
return cpfloat(Op(typed_op, arg_nets))
@overload
def cpvalue(value: bool) -> cpbool: # pyright: ignore[reportOverlappingOverload]
...
@overload
def cpvalue(value: int) -> cpint:
...
@overload
def cpvalue(value: float) -> cpfloat:
...
def cpvalue(value: bool | int | float) -> cpbool | cpint | cpfloat:
vi = InitVar(value)
if isinstance(value, bool):
return cpbool(vi)
elif isinstance(value, float):
return cpfloat(vi)
else:
return cpint(vi)
def _get_data_and_dtype(value: Any) -> tuple[str, float | int]:
if isinstance(value, bool):
return ('bool', int(value))
elif isinstance(value, int):
return ('int', int(value))
elif isinstance(value, float):
return ('float', float(value))
else:
raise ValueError(f'Non supported data type: {type(value).__name__}')
def stable_toposort(edges: Iterable[tuple[Node, Node]]) -> list[Node]:
"""Perform a stable topological sort on a directed acyclic graph (DAG).
Arguments:
edges: Iterable of (u, v) pairs meaning u -> v
Returns:
List of nodes in topologically sorted order.
"""
# Track adjacency and indegrees
adj: defaultdict[Node, list[Node]] = defaultdict(list)
indeg: defaultdict[Node, int] = defaultdict(int)
order: dict[Node, int] = {} # first-appearance order of each node
# Build graph and order map
pos = 0
for u, v in edges:
if u not in order:
order[u] = pos
pos += 1
if v not in order:
order[v] = pos
pos += 1
adj[u].append(v)
indeg[v] += 1
indeg.setdefault(u, 0)
# Initialize queue with nodes of indegree 0, sorted by first appearance
queue = deque(sorted([n for n in indeg if indeg[n] == 0], key=lambda x: order[x]))
result: list[Node] = []
while queue:
node = queue.popleft()
result.append(node)
for nei in adj[node]:
indeg[nei] -= 1
if indeg[nei] == 0:
queue.append(nei)
# Maintain stability: sort queue by appearance order
queue = deque(sorted(queue, key=lambda x: order[x]))
# Check if graph had a cycle (not all nodes output)
if len(result) != len(indeg):
raise ValueError("Graph contains a cycle — topological sort not possible")
return result
def get_all_dag_edges(nodes: Iterable[Node]) -> Generator[tuple[Node, Node], None, None]:
"""Get all edges in the DAG by traversing from the given nodes
Arguments:
nodes: Iterable of nodes to start the traversal from
Yields:
Tuples of (source_node, target_node) representing edges in the DAG
"""
for node in nodes:
yield from get_all_dag_edges(net.source for net in node.args)
yield from ((net.source, node) for net in node.args)
def get_const_nets(nodes: list[Node]) -> list[Net]:
"""Get all nets with a constant nodes value
Returns:
List of nets whose source node is a Const
"""
net_lookup = {net.source: net for node in nodes for net in node.args}
return [net_lookup[node] for node in nodes if isinstance(node, InitVar)]
def add_read_ops(node_list: list[Node]) -> Generator[tuple[Net | None, Node], None, None]:
"""Add read node before each op where arguments are not already positioned
correctly in the registers
Arguments:
node_list: List of nodes in the order of execution
Returns:
Yields tuples of a net and a node. The net is the result net
for the node. If the node has no result net None is returned in the tuple.
"""
registers: list[None | Net] = [None] * 2
# Generate result net lookup table
net_lookup = {net.source: net for node in node_list for net in node.args}
for node in node_list:
if not isinstance(node, InitVar):
for i, net in enumerate(node.args):
if id(net) != id(registers[i]):
#if net in registers:
# print('x swap registers')
type_list = ['int' if r is None else transl_type(r.dtype) for r in registers]
new_node = Op(f"read_{transl_type(net.dtype)}_reg{i}_" + '_'.join(type_list), [])
yield net, new_node
registers[i] = net
if node in net_lookup:
yield net_lookup[node], node
registers[0] = net_lookup[node]
else:
yield None, node
def add_write_ops(net_node_list: list[tuple[Net | None, Node]], const_nets: list[Net]) -> Generator[tuple[Net | None, Node], None, None]:
"""Add write operation for each new defined net if a read operation is later followed
Returns:
Yields tuples of a net and a node. The associated net is provided for read and write nodes.
Otherwise None is returned in the tuple.
"""
# Initialize set of nets with constants
stored_nets = set(const_nets)
#assert all(node.name.startswith('read_') for net, node in net_node_list if net)
read_back_nets = {
net for net, node in net_node_list
if net and node.name.startswith('read_')}
for net, node in net_node_list:
if isinstance(node, Write):
yield node.args[0], node
elif node.name.startswith('read_'):
yield net, node
else:
yield None, node
if net and net in read_back_nets and net not in stored_nets:
yield net, Write(net)
stored_nets.add(net)
def get_nets(*inputs: Iterable[Iterable[Any]]) -> list[Net]:
nets: set[Net] = set()
for input in inputs:
for el in input:
for net in el:
if isinstance(net, Net):
nets.add(net)
return list(nets)
def get_variable_mem_layout(variable_list: Iterable[Net], sdb: stencil_database) -> tuple[list[tuple[Net, int, int]], int]:
offset: int = 0
object_list: list[tuple[Net, int, int]] = []
for variable in variable_list:
lengths = sdb.get_symbol_size('dummy_' + transl_type(variable.dtype))
object_list.append((variable, offset, lengths))
offset += (lengths + 3) // 4 * 4
return object_list, offset
def get_aux_function_mem_layout(function_names: Iterable[str], sdb: stencil_database) -> tuple[list[tuple[str, int, int]], int]:
offset: int = 0
function_list: list[tuple[str, int, int]] = []
for name in function_names:
lengths = sdb.get_symbol_size(name)
function_list.append((name, offset, lengths))
offset += (lengths + 3) // 4 * 4
return function_list, offset
def compile_to_instruction_list(node_list: Iterable[Node], sdb: stencil_database) -> tuple[binw.data_writer, dict[Net, tuple[int, int, str]]]:
variables: dict[Net, tuple[int, int, str]] = dict()
ordered_ops = list(stable_toposort(get_all_dag_edges(node_list)))
const_net_list = get_const_nets(ordered_ops)
output_ops = list(add_read_ops(ordered_ops))
extended_output_ops = list(add_write_ops(output_ops, const_net_list))
dw = binw.data_writer(sdb.byteorder)
# Deallocate old allocated memory (if existing)
dw.write_com(binw.Command.FREE_MEMORY)
# Get all nets/variables associated with heap memory
variable_list = get_nets([[const_net_list]], extended_output_ops)
# Write data
variable_mem_layout, data_section_lengths = get_variable_mem_layout(variable_list, sdb)
dw.write_com(binw.Command.ALLOCATE_DATA)
dw.write_int(data_section_lengths)
for net, out_offs, lengths in variable_mem_layout:
variables[net] = (out_offs, lengths, net.dtype)
if isinstance(net.source, InitVar):
dw.write_com(binw.Command.COPY_DATA)
dw.write_int(out_offs)
dw.write_int(lengths)
dw.write_value(net.source.value, lengths)
# print(f'+ {net.dtype} {net.source.value}')
# prep auxiliary_functions
aux_function_names = sdb.get_sub_functions(node.name for _, node in extended_output_ops)
aux_function_mem_layout, aux_function_lengths = get_aux_function_mem_layout(aux_function_names, sdb)
aux_func_addr_lookup = {name: offs for name, offs, _ in aux_function_mem_layout}
# Prepare program code and relocations
object_addr_lookup = {net: offs for net, offs, _ in variable_mem_layout}
data_list: list[bytes] = []
patch_list: list[tuple[int, int, int, binw.Command]] = []
offset = aux_function_lengths # offset in generated code chunk
# assemble stencils to main program
data = sdb.get_function_code('entry_function_shell', 'start')
data_list.append(data)
offset += len(data)
for associated_net, node in extended_output_ops:
assert node.name in sdb.stencil_definitions, f"- Warning: {node.name} stencil not found"
data = sdb.get_stencil_code(node.name)
data_list.append(data)
# print(f"* {node.name} ({offset}) " + ' '.join(f'{d:02X}' for d in data))
for patch in sdb.get_patch_positions(node.name):
if patch.target_symbol_info == 'STT_OBJECT':
assert associated_net, f"Relocation found but no net defined for operation {node.name}"
addr = object_addr_lookup[associated_net]
patch_value = addr + patch.addend - (offset + patch.addr)
patch_list.append((patch.type.value, offset + patch.addr, patch_value, binw.Command.PATCH_OBJECT))
elif patch.target_symbol_info == 'STT_FUNC':
addr = aux_func_addr_lookup[patch.target_symbol_name]
patch_value = addr + patch.addend - (offset + patch.addr)
patch_list.append((patch.type.value, offset + patch.addr, patch_value, binw.Command.PATCH_FUNC))
else:
raise ValueError(f"Unsupported: {node.name} {patch.target_symbol_info} {patch.target_symbol_name}")
offset += len(data)
data = sdb.get_function_code('entry_function_shell', 'end')
data_list.append(data)
offset += len(data)
# allocate program data
dw.write_com(binw.Command.ALLOCATE_CODE)
dw.write_int(offset)
# write aux code
for name, out_offs, lengths in aux_function_mem_layout:
dw.write_com(binw.Command.COPY_CODE)
dw.write_int(out_offs)
dw.write_int(lengths)
dw.write_bytes(sdb.get_function_code(name))
# write program code
dw.write_com(binw.Command.COPY_CODE)
dw.write_int(aux_function_lengths)
dw.write_int(offset - aux_function_lengths)
dw.write_bytes(b''.join(data_list))
# write relocations
for patch_type, patch_addr, addr, patch_command in patch_list:
dw.write_com(patch_command)
dw.write_int(patch_addr)
dw.write_int(patch_type)
dw.write_int(addr, signed=True)
dw.write_com(binw.Command.ENTRY_POINT)
dw.write_int(aux_function_lengths)
return dw, variables
class Target():
def __init__(self, arch: str = 'native', optimization: str = 'O3') -> None:
self.sdb = stencil_db_from_package(arch, optimization)
self._variables: dict[Net, tuple[int, int, str]] = dict()
def compile(self, *variables: int | float | cpint | cpfloat | cpbool | list[int | float | cpint | cpfloat | cpbool]) -> None:
nodes: list[Node] = []
for s in variables:
if isinstance(s, list):
for net in s:
assert isinstance(net, Net), f"The folowing element is not a Net: {net}"
nodes.append(Write(net))
else:
nodes.append(Write(s))
dw, self._variables = compile_to_instruction_list(nodes, self.sdb)
dw.write_com(binw.Command.END_COM)
assert coparun(dw.get_data()) > 0
def run(self) -> None:
# set entry point and run code
dw = binw.data_writer(self.sdb.byteorder)
dw.write_com(binw.Command.RUN_PROG)
dw.write_com(binw.Command.END_COM)
assert coparun(dw.get_data()) > 0
@overload
def read_value(self, net: cpbool) -> bool:
...
@overload
def read_value(self, net: cpfloat) -> float:
...
@overload
def read_value(self, net: cpint) -> int:
...
@overload
def read_value(self, net: NumLike) -> float | int | bool:
...
def read_value(self, net: NumLike) -> float | int | bool:
assert isinstance(net, Net), "Variable must be a copapy variable object"
assert net in self._variables, f"Variable {net} not found"
addr, lengths, var_type = self._variables[net]
assert lengths > 0
data = read_data_mem(addr, lengths)
assert data is not None and len(data) == lengths, f"Failed to read variable {net}"
en = {'little': '<', 'big': '>'}[self.sdb.byteorder]
if var_type == 'float':
if lengths == 4:
value = struct.unpack(en + 'f', data)[0]
elif lengths == 8:
value = struct.unpack(en + 'd', data)[0]
else:
raise ValueError(f"Unsupported float length: {lengths} bytes")
assert isinstance(value, float)
return value
elif var_type == 'int':
assert lengths in (1, 2, 4, 8), f"Unsupported int length: {lengths} bytes"
value = int.from_bytes(data, byteorder=self.sdb.byteorder, signed=True)
return value
elif var_type == 'bool':
assert lengths in (1, 2, 4, 8), f"Unsupported int length: {lengths} bytes"
value = bool.from_bytes(data, byteorder=self.sdb.byteorder, signed=True)
return value
else:
raise ValueError(f"Unsupported variable type: {var_type}")
def read_value_remote(self, net: Net) -> None:
dw = binw.data_writer(self.sdb.byteorder)
add_read_command(dw, self._variables, net)
assert coparun(dw.get_data()) > 0
def add_read_command(dw: binw.data_writer, variables: dict[Net, tuple[int, int, str]], net: Net) -> None:
assert net in variables, f"Variable {net} not found in data writer variables"
addr, lengths, _ = variables[net]
dw.write_com(binw.Command.READ_DATA)
dw.write_int(addr)
dw.write_int(lengths)
from ._target import Target
from ._basic_types import NumLike, cpbool, cpfloat, cpint, \
CPNumber, cpvalue, cpvector, generic_sdb, iif
__all__ = [
"Target",
"NumLike",
"cpbool",
"cpfloat",
"cpint",
"CPNumber",
"cpvalue",
"cpvector",
"generic_sdb",
"iif",
]

438
src/copapy/_basic_types.py Normal file
View File

@ -0,0 +1,438 @@
import pkgutil
from typing import Any, TypeVar, overload, TypeAlias
from ._stencils import stencil_database
import platform
NumLike: TypeAlias = 'cpint | cpfloat | cpbool | int | float| bool'
NumLikeAndNet: TypeAlias = 'cpint | cpfloat | cpbool | int | float | bool | Net'
NetAndNum: TypeAlias = 'Net | int | float'
unifloat: TypeAlias = 'cpfloat | float'
uniint: TypeAlias = 'cpint | int'
unibool: TypeAlias = 'cpbool | bool'
TNumber = TypeVar("TNumber", bound='CPNumber')
T = TypeVar("T")
def get_var_name(var: Any, scope: dict[str, Any] = globals()) -> list[str]:
return [name for name, value in scope.items() if value is var]
def stencil_db_from_package(arch: str = 'native', optimization: str = 'O3') -> stencil_database:
if arch == 'native':
arch = platform.machine()
stencil_data = pkgutil.get_data(__name__, f"obj/stencils_{arch}_{optimization}.o")
assert stencil_data, f"stencils_{arch}_{optimization} not found"
return stencil_database(stencil_data)
generic_sdb = stencil_db_from_package()
def transl_type(t: str) -> str:
return {'bool': 'int'}.get(t, t)
class Node:
def __init__(self) -> None:
self.args: list[Net] = []
self.name: str = ''
def __repr__(self) -> str:
return f"Node:{self.name}({', '.join(str(a) for a in self.args) if self.args else (self.value if isinstance(self, InitVar) else '')})"
class Device():
pass
class Net:
def __init__(self, dtype: str, source: Node):
self.dtype = dtype
self.source = source
def __repr__(self) -> str:
names = get_var_name(self)
return f"{'name:' + names[0] if names else 'id:' + str(id(self))[-5:]}"
def __hash__(self) -> int:
return id(self)
class CPNumber(Net):
def __init__(self, dtype: str, source: Node):
self.dtype = dtype
self.source = source
@overload
def __mul__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __mul__(self, other: unifloat) -> 'cpfloat':
...
def __mul__(self, other: NumLike) -> 'CPNumber':
return _add_op('mul', [self, other], True)
@overload
def __rmul__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rmul__(self, other: unifloat) -> 'cpfloat':
...
def __rmul__(self, other: NumLike) -> 'CPNumber':
return _add_op('mul', [self, other], True)
@overload
def __add__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __add__(self, other: unifloat) -> 'cpfloat':
...
def __add__(self, other: NumLike) -> 'CPNumber':
return _add_op('add', [self, other], True)
@overload
def __radd__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __radd__(self, other: unifloat) -> 'cpfloat':
...
def __radd__(self, other: NumLike) -> 'CPNumber':
return _add_op('add', [self, other], True)
@overload
def __sub__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __sub__(self, other: unifloat) -> 'cpfloat':
...
def __sub__(self, other: NumLike) -> 'CPNumber':
return _add_op('sub', [self, other])
@overload
def __rsub__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rsub__(self, other: unifloat) -> 'cpfloat':
...
def __rsub__(self, other: NumLike) -> 'CPNumber':
return _add_op('sub', [other, self])
def __truediv__(self, other: NumLike) -> 'cpfloat':
ret = _add_op('div', [self, other])
assert isinstance(ret, cpfloat)
return ret
def __rtruediv__(self, other: NumLike) -> 'cpfloat':
ret = _add_op('div', [other, self])
assert isinstance(ret, cpfloat)
return ret
@overload
def __floordiv__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __floordiv__(self, other: unifloat) -> 'cpfloat':
...
def __floordiv__(self, other: NumLike) -> 'CPNumber':
return _add_op('floordiv', [self, other])
@overload
def __rfloordiv__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rfloordiv__(self, other: unifloat) -> 'cpfloat':
...
def __rfloordiv__(self, other: NumLike) -> 'CPNumber':
return _add_op('floordiv', [other, self])
def __neg__(self: TNumber) -> TNumber:
ret = _add_op('sub', [cpvalue(0), self])
assert isinstance(ret, type(self))
return ret
def __gt__(self, other: NumLike) -> 'cpbool':
ret = _add_op('gt', [self, other])
return cpbool(ret.source)
def __lt__(self, other: NumLike) -> 'cpbool':
ret = _add_op('gt', [other, self])
return cpbool(ret.source)
def __eq__(self, other: NumLike) -> 'cpbool': # type: ignore
ret = _add_op('eq', [self, other], True)
return cpbool(ret.source)
def __ne__(self, other: NumLike) -> 'cpbool': # type: ignore
ret = _add_op('ne', [self, other], True)
return cpbool(ret.source)
@overload
def __mod__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __mod__(self, other: unifloat) -> 'cpfloat':
...
def __mod__(self, other: NumLike) -> 'CPNumber':
return _add_op('mod', [self, other])
@overload
def __rmod__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rmod__(self, other: unifloat) -> 'cpfloat':
...
def __rmod__(self, other: NumLike) -> 'CPNumber':
return _add_op('mod', [other, self])
@overload
def __pow__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __pow__(self, other: unifloat) -> 'cpfloat':
...
def __pow__(self, other: NumLike) -> 'CPNumber':
return _add_op('pow', [other, self])
@overload
def __rpow__(self: TNumber, other: uniint) -> TNumber:
...
@overload
def __rpow__(self, other: unifloat) -> 'cpfloat':
...
def __rpow__(self, other: NumLike) -> 'CPNumber':
return _add_op('rpow', [self, other])
def __hash__(self) -> int:
return super().__hash__()
class cpint(CPNumber):
def __init__(self, source: int | Node):
if isinstance(source, Node):
self.source = source
else:
self.source = InitVar(int(source))
self.dtype = 'int'
def __lshift__(self, other: uniint) -> 'cpint':
ret = _add_op('lshift', [self, other])
assert isinstance(ret, cpint)
return ret
def __rlshift__(self, other: uniint) -> 'cpint':
ret = _add_op('lshift', [other, self])
assert isinstance(ret, cpint)
return ret
def __rshift__(self, other: uniint) -> 'cpint':
ret = _add_op('rshift', [self, other])
assert isinstance(ret, cpint)
return ret
def __rrshift__(self, other: uniint) -> 'cpint':
ret = _add_op('rshift', [other, self])
assert isinstance(ret, cpint)
return ret
def __and__(self, other: uniint) -> 'cpint':
ret = _add_op('bwand', [self, other], True)
assert isinstance(ret, cpint)
return ret
def __rand__(self, other: uniint) -> 'cpint':
ret = _add_op('rwand', [other, self], True)
assert isinstance(ret, cpint)
return ret
def __or__(self, other: uniint) -> 'cpint':
ret = _add_op('bwor', [self, other], True)
assert isinstance(ret, cpint)
return ret
def __ror__(self, other: uniint) -> 'cpint':
ret = _add_op('bwor', [other, self], True)
assert isinstance(ret, cpint)
return ret
def __xor__(self, other: uniint) -> 'cpint':
ret = _add_op('bwxor', [self, other], True)
assert isinstance(ret, cpint)
return ret
def __rxor__(self, other: uniint) -> 'cpint':
ret = _add_op('bwxor', [other, self], True)
assert isinstance(ret, cpint)
return ret
class cpfloat(CPNumber):
def __init__(self, source: float | Node | CPNumber):
if isinstance(source, Node):
self.source = source
elif isinstance(source, CPNumber):
self.source = _add_op('cast_float', [source]).source
else:
self.source = InitVar(float(source))
self.dtype = 'float'
class cpbool(cpint):
def __init__(self, source: bool | Node):
if isinstance(source, Node):
self.source = source
else:
self.source = InitVar(bool(source))
self.dtype = 'bool'
class cpvector:
def __init__(self, *value: NumLike):
self.value = value
def __add__(self, other: 'cpvector') -> 'cpvector':
assert len(self.value) == len(other.value)
tup = (a + b for a, b in zip(self.value, other.value))
return cpvector(*(v for v in tup if isinstance(v, CPNumber)))
class InitVar(Node):
def __init__(self, value: int | float):
self.dtype, self.value = _get_data_and_dtype(value)
self.name = 'const_' + self.dtype
self.args = []
class Write(Node):
def __init__(self, input: NetAndNum):
if isinstance(input, Net):
net = input
else:
node = InitVar(input)
net = Net(node.dtype, node)
self.name = 'write_' + transl_type(net.dtype)
self.args = [net]
class Op(Node):
def __init__(self, typed_op_name: str, args: list[Net]):
assert not args or any(isinstance(t, Net) for t in args), 'args parameter must be of type list[Net]'
self.name: str = typed_op_name
self.args: list[Net] = args
def net_from_value(value: Any) -> Net:
vi = InitVar(value)
return Net(vi.dtype, vi)
@overload
def iif(expression: CPNumber, true_result: unibool, false_result: unibool) -> cpbool: # pyright: ignore[reportOverlappingOverload]
...
@overload
def iif(expression: CPNumber, true_result: uniint, false_result: uniint) -> cpint:
...
@overload
def iif(expression: CPNumber, true_result: unifloat, false_result: unifloat) -> cpfloat:
...
@overload
def iif(expression: NumLike, true_result: T, false_result: T) -> T:
...
def iif(expression: Any, true_result: Any, false_result: Any) -> Any:
# TODO: check that input types are matching
alowed_type = cpint | cpfloat | cpbool | int | float | bool
assert isinstance(true_result, alowed_type) and isinstance(false_result, alowed_type), "Result type not supported"
if isinstance(expression, CPNumber):
return (expression != 0) * true_result + (expression == 0) * false_result
else:
return true_result if expression else false_result
def _add_op(op: str, args: list[CPNumber | int | float], commutative: bool = False) -> CPNumber:
arg_nets = [a if isinstance(a, Net) else net_from_value(a) for a in args]
if commutative:
arg_nets = sorted(arg_nets, key=lambda a: a.dtype)
typed_op = '_'.join([op] + [transl_type(a.dtype) for a in arg_nets])
if typed_op not in generic_sdb.stencil_definitions:
raise NotImplementedError(f"Operation {op} not implemented for {' and '.join([a.dtype for a in arg_nets])}")
result_type = generic_sdb.stencil_definitions[typed_op].split('_')[0]
if result_type == 'int':
return cpint(Op(typed_op, arg_nets))
else:
return cpfloat(Op(typed_op, arg_nets))
@overload
def cpvalue(value: bool) -> cpbool: # pyright: ignore[reportOverlappingOverload]
...
@overload
def cpvalue(value: int) -> cpint:
...
@overload
def cpvalue(value: float) -> cpfloat:
...
def cpvalue(value: bool | int | float) -> cpbool | cpint | cpfloat:
vi = InitVar(value)
if isinstance(value, bool):
return cpbool(vi)
elif isinstance(value, float):
return cpfloat(vi)
else:
return cpint(vi)
def _get_data_and_dtype(value: Any) -> tuple[str, float | int]:
if isinstance(value, bool):
return ('bool', int(value))
elif isinstance(value, int):
return ('int', int(value))
elif isinstance(value, float):
return ('float', float(value))
else:
raise ValueError(f'Non supported data type: {type(value).__name__}')

280
src/copapy/_compiler.py Normal file
View File

@ -0,0 +1,280 @@
from typing import Generator, Iterable, Any
from . import _binwrite as binw
from ._stencils import stencil_database
from collections import defaultdict, deque
from ._basic_types import Net, Node, Write, InitVar, Op, transl_type
def stable_toposort(edges: Iterable[tuple[Node, Node]]) -> list[Node]:
"""Perform a stable topological sort on a directed acyclic graph (DAG).
Arguments:
edges: Iterable of (u, v) pairs meaning u -> v
Returns:
List of nodes in topologically sorted order.
"""
# Track adjacency and indegrees
adj: defaultdict[Node, list[Node]] = defaultdict(list)
indeg: defaultdict[Node, int] = defaultdict(int)
order: dict[Node, int] = {} # first-appearance order of each node
# Build graph and order map
pos = 0
for u, v in edges:
if u not in order:
order[u] = pos
pos += 1
if v not in order:
order[v] = pos
pos += 1
adj[u].append(v)
indeg[v] += 1
indeg.setdefault(u, 0)
# Initialize queue with nodes of indegree 0, sorted by first appearance
queue = deque(sorted([n for n in indeg if indeg[n] == 0], key=lambda x: order[x]))
result: list[Node] = []
while queue:
node = queue.popleft()
result.append(node)
for nei in adj[node]:
indeg[nei] -= 1
if indeg[nei] == 0:
queue.append(nei)
# Maintain stability: sort queue by appearance order
queue = deque(sorted(queue, key=lambda x: order[x]))
# Check if graph had a cycle (not all nodes output)
if len(result) != len(indeg):
raise ValueError("Graph contains a cycle — topological sort not possible")
return result
def get_all_dag_edges(nodes: Iterable[Node]) -> Generator[tuple[Node, Node], None, None]:
"""Get all edges in the DAG by traversing from the given nodes
Arguments:
nodes: Iterable of nodes to start the traversal from
Yields:
Tuples of (source_node, target_node) representing edges in the DAG
"""
for node in nodes:
yield from get_all_dag_edges(net.source for net in node.args)
yield from ((net.source, node) for net in node.args)
def get_const_nets(nodes: list[Node]) -> list[Net]:
"""Get all nets with a constant nodes value
Returns:
List of nets whose source node is a Const
"""
net_lookup = {net.source: net for node in nodes for net in node.args}
return [net_lookup[node] for node in nodes if isinstance(node, InitVar)]
def add_read_ops(node_list: list[Node]) -> Generator[tuple[Net | None, Node], None, None]:
"""Add read node before each op where arguments are not already positioned
correctly in the registers
Arguments:
node_list: List of nodes in the order of execution
Returns:
Yields tuples of a net and a node. The net is the result net
for the node. If the node has no result net None is returned in the tuple.
"""
registers: list[None | Net] = [None] * 2
# Generate result net lookup table
net_lookup = {net.source: net for node in node_list for net in node.args}
for node in node_list:
if not isinstance(node, InitVar):
for i, net in enumerate(node.args):
if id(net) != id(registers[i]):
#if net in registers:
# print('x swap registers')
type_list = ['int' if r is None else transl_type(r.dtype) for r in registers]
new_node = Op(f"read_{transl_type(net.dtype)}_reg{i}_" + '_'.join(type_list), [])
yield net, new_node
registers[i] = net
if node in net_lookup:
yield net_lookup[node], node
registers[0] = net_lookup[node]
else:
yield None, node
def add_write_ops(net_node_list: list[tuple[Net | None, Node]], const_nets: list[Net]) -> Generator[tuple[Net | None, Node], None, None]:
"""Add write operation for each new defined net if a read operation is later followed
Returns:
Yields tuples of a net and a node. The associated net is provided for read and write nodes.
Otherwise None is returned in the tuple.
"""
# Initialize set of nets with constants
stored_nets = set(const_nets)
#assert all(node.name.startswith('read_') for net, node in net_node_list if net)
read_back_nets = {
net for net, node in net_node_list
if net and node.name.startswith('read_')}
for net, node in net_node_list:
if isinstance(node, Write):
yield node.args[0], node
elif node.name.startswith('read_'):
yield net, node
else:
yield None, node
if net and net in read_back_nets and net not in stored_nets:
yield net, Write(net)
stored_nets.add(net)
def get_nets(*inputs: Iterable[Iterable[Any]]) -> list[Net]:
nets: set[Net] = set()
for input in inputs:
for el in input:
for net in el:
if isinstance(net, Net):
nets.add(net)
return list(nets)
def get_variable_mem_layout(variable_list: Iterable[Net], sdb: stencil_database) -> tuple[list[tuple[Net, int, int]], int]:
offset: int = 0
object_list: list[tuple[Net, int, int]] = []
for variable in variable_list:
lengths = sdb.get_symbol_size('dummy_' + transl_type(variable.dtype))
object_list.append((variable, offset, lengths))
offset += (lengths + 3) // 4 * 4
return object_list, offset
def get_aux_function_mem_layout(function_names: Iterable[str], sdb: stencil_database) -> tuple[list[tuple[str, int, int]], int]:
offset: int = 0
function_list: list[tuple[str, int, int]] = []
for name in function_names:
lengths = sdb.get_symbol_size(name)
function_list.append((name, offset, lengths))
offset += (lengths + 3) // 4 * 4
return function_list, offset
def compile_to_instruction_list(node_list: Iterable[Node], sdb: stencil_database) -> tuple[binw.data_writer, dict[Net, tuple[int, int, str]]]:
variables: dict[Net, tuple[int, int, str]] = dict()
ordered_ops = list(stable_toposort(get_all_dag_edges(node_list)))
const_net_list = get_const_nets(ordered_ops)
output_ops = list(add_read_ops(ordered_ops))
extended_output_ops = list(add_write_ops(output_ops, const_net_list))
dw = binw.data_writer(sdb.byteorder)
# Deallocate old allocated memory (if existing)
dw.write_com(binw.Command.FREE_MEMORY)
# Get all nets/variables associated with heap memory
variable_list = get_nets([[const_net_list]], extended_output_ops)
# Write data
variable_mem_layout, data_section_lengths = get_variable_mem_layout(variable_list, sdb)
dw.write_com(binw.Command.ALLOCATE_DATA)
dw.write_int(data_section_lengths)
for net, out_offs, lengths in variable_mem_layout:
variables[net] = (out_offs, lengths, net.dtype)
if isinstance(net.source, InitVar):
dw.write_com(binw.Command.COPY_DATA)
dw.write_int(out_offs)
dw.write_int(lengths)
dw.write_value(net.source.value, lengths)
# print(f'+ {net.dtype} {net.source.value}')
# prep auxiliary_functions
aux_function_names = sdb.get_sub_functions(node.name for _, node in extended_output_ops)
aux_function_mem_layout, aux_function_lengths = get_aux_function_mem_layout(aux_function_names, sdb)
aux_func_addr_lookup = {name: offs for name, offs, _ in aux_function_mem_layout}
# Prepare program code and relocations
object_addr_lookup = {net: offs for net, offs, _ in variable_mem_layout}
data_list: list[bytes] = []
patch_list: list[tuple[int, int, int, binw.Command]] = []
offset = aux_function_lengths # offset in generated code chunk
# assemble stencils to main program
data = sdb.get_function_code('entry_function_shell', 'start')
data_list.append(data)
offset += len(data)
for associated_net, node in extended_output_ops:
assert node.name in sdb.stencil_definitions, f"- Warning: {node.name} stencil not found"
data = sdb.get_stencil_code(node.name)
data_list.append(data)
# print(f"* {node.name} ({offset}) " + ' '.join(f'{d:02X}' for d in data))
for patch in sdb.get_patch_positions(node.name):
if patch.target_symbol_info == 'STT_OBJECT':
assert associated_net, f"Relocation found but no net defined for operation {node.name}"
addr = object_addr_lookup[associated_net]
patch_value = addr + patch.addend - (offset + patch.addr)
patch_list.append((patch.type.value, offset + patch.addr, patch_value, binw.Command.PATCH_OBJECT))
elif patch.target_symbol_info == 'STT_FUNC':
addr = aux_func_addr_lookup[patch.target_symbol_name]
patch_value = addr + patch.addend - (offset + patch.addr)
patch_list.append((patch.type.value, offset + patch.addr, patch_value, binw.Command.PATCH_FUNC))
else:
raise ValueError(f"Unsupported: {node.name} {patch.target_symbol_info} {patch.target_symbol_name}")
offset += len(data)
data = sdb.get_function_code('entry_function_shell', 'end')
data_list.append(data)
offset += len(data)
# allocate program data
dw.write_com(binw.Command.ALLOCATE_CODE)
dw.write_int(offset)
# write aux functions
for name, out_offs, lengths in aux_function_mem_layout:
dw.write_com(binw.Command.COPY_CODE)
dw.write_int(out_offs)
dw.write_int(lengths)
dw.write_bytes(sdb.get_function_code(name))
# write entry function code
dw.write_com(binw.Command.COPY_CODE)
dw.write_int(aux_function_lengths)
dw.write_int(offset - aux_function_lengths)
dw.write_bytes(b''.join(data_list))
# write patch operations
for patch_type, patch_addr, addr, patch_command in patch_list:
dw.write_com(patch_command)
dw.write_int(patch_addr)
dw.write_int(patch_type)
dw.write_int(addr, signed=True)
dw.write_com(binw.Command.ENTRY_POINT)
dw.write_int(aux_function_lengths)
return dw, variables

91
src/copapy/_target.py Normal file
View File

@ -0,0 +1,91 @@
from typing import overload
from . import _binwrite as binw
from coparun_module import coparun, read_data_mem
import struct
from ._basic_types import stencil_db_from_package
from ._basic_types import cpbool, cpint, cpfloat, Net, Node, Write, NumLike
from ._compiler import compile_to_instruction_list
def add_read_command(dw: binw.data_writer, variables: dict[Net, tuple[int, int, str]], net: Net) -> None:
assert net in variables, f"Variable {net} not found in data writer variables"
addr, lengths, _ = variables[net]
dw.write_com(binw.Command.READ_DATA)
dw.write_int(addr)
dw.write_int(lengths)
class Target():
def __init__(self, arch: str = 'native', optimization: str = 'O3') -> None:
self.sdb = stencil_db_from_package(arch, optimization)
self._variables: dict[Net, tuple[int, int, str]] = dict()
def compile(self, *variables: int | float | cpint | cpfloat | cpbool | list[int | float | cpint | cpfloat | cpbool]) -> None:
nodes: list[Node] = []
for s in variables:
if isinstance(s, list):
for net in s:
assert isinstance(net, Net), f"The folowing element is not a Net: {net}"
nodes.append(Write(net))
else:
nodes.append(Write(s))
dw, self._variables = compile_to_instruction_list(nodes, self.sdb)
dw.write_com(binw.Command.END_COM)
assert coparun(dw.get_data()) > 0
def run(self) -> None:
# set entry point and run code
dw = binw.data_writer(self.sdb.byteorder)
dw.write_com(binw.Command.RUN_PROG)
dw.write_com(binw.Command.END_COM)
assert coparun(dw.get_data()) > 0
@overload
def read_value(self, net: cpbool) -> bool:
...
@overload
def read_value(self, net: cpfloat) -> float:
...
@overload
def read_value(self, net: cpint) -> int:
...
@overload
def read_value(self, net: NumLike) -> float | int | bool:
...
def read_value(self, net: NumLike) -> float | int | bool:
assert isinstance(net, Net), "Variable must be a copapy variable object"
assert net in self._variables, f"Variable {net} not found"
addr, lengths, var_type = self._variables[net]
assert lengths > 0
data = read_data_mem(addr, lengths)
assert data is not None and len(data) == lengths, f"Failed to read variable {net}"
en = {'little': '<', 'big': '>'}[self.sdb.byteorder]
if var_type == 'float':
if lengths == 4:
value = struct.unpack(en + 'f', data)[0]
elif lengths == 8:
value = struct.unpack(en + 'd', data)[0]
else:
raise ValueError(f"Unsupported float length: {lengths} bytes")
assert isinstance(value, float)
return value
elif var_type == 'int':
assert lengths in (1, 2, 4, 8), f"Unsupported int length: {lengths} bytes"
value = int.from_bytes(data, byteorder=self.sdb.byteorder, signed=True)
return value
elif var_type == 'bool':
assert lengths in (1, 2, 4, 8), f"Unsupported int length: {lengths} bytes"
value = bool.from_bytes(data, byteorder=self.sdb.byteorder, signed=True)
return value
else:
raise ValueError(f"Unsupported variable type: {var_type}")
def read_value_remote(self, net: Net) -> None:
dw = binw.data_writer(self.sdb.byteorder)
add_read_command(dw, self._variables, net)
assert coparun(dw.get_data()) > 0

20
src/copapy/backend.py Normal file
View File

@ -0,0 +1,20 @@
from ._target import add_read_command
from ._basic_types import Net, Op, Node, InitVar, Write
from ._compiler import compile_to_instruction_list, \
stable_toposort, get_const_nets, get_all_dag_edges, add_read_ops, \
add_write_ops
__all__ = [
"add_read_command",
"Net",
"Op",
"Node",
"InitVar",
"Write",
"compile_to_instruction_list",
"stable_toposort",
"get_const_nets",
"get_all_dag_edges",
"add_read_ops",
"add_write_ops",
]

View File

@ -1,5 +1,6 @@
from copapy import Write, cpvalue
import copapy as rc
from copapy import cpvalue
from copapy.backend import Write
import copapy.backend as cpbe
def test_ast_generation():
@ -32,27 +33,27 @@ def test_ast_generation():
print(out)
print('-- get_edges:')
edges = list(rc.get_all_dag_edges(out))
edges = list(cpbe.get_all_dag_edges(out))
for p in edges:
print('#', p)
print('-- get_ordered_ops:')
ordered_ops = list(rc.stable_toposort(edges))
ordered_ops = list(cpbe.stable_toposort(edges))
for p in ordered_ops:
print('#', p)
print('-- get_consts:')
const_list = rc.get_const_nets(ordered_ops)
const_list = cpbe.get_const_nets(ordered_ops)
for p in const_list:
print('#', p)
print('-- add_read_ops:')
output_ops = list(rc.add_read_ops(ordered_ops))
output_ops = list(cpbe.add_read_ops(ordered_ops))
for p in output_ops:
print('#', p)
print('-- add_write_ops:')
extended_output_ops = list(rc.add_write_ops(output_ops, const_list))
extended_output_ops = list(cpbe.add_write_ops(output_ops, const_list))
for p in extended_output_ops:
print('#', p)
print('--')

View File

@ -1,8 +1,10 @@
from copapy import Write, cpvalue, NumLike
from copapy import cpvalue, NumLike
from copapy.backend import Write, compile_to_instruction_list, add_read_command
import copapy
import subprocess
import struct
from copapy import binwrite
from copapy import _binwrite
import copapy.backend
def run_command(command: list[str]) -> str:
@ -47,16 +49,16 @@ def test_compile():
out = [Write(r) for r in ret]
il, variables = copapy.compile_to_instruction_list(out, copapy.generic_sdb)
il, variables = compile_to_instruction_list(out, copapy.generic_sdb)
# run program command
il.write_com(binwrite.Command.RUN_PROG)
il.write_com(_binwrite.Command.RUN_PROG)
for net in ret:
assert isinstance(net, copapy.Net)
copapy.add_read_command(il, variables, net)
assert isinstance(net, copapy.backend.Net)
add_read_command(il, variables, net)
il.write_com(binwrite.Command.END_COM)
il.write_com(_binwrite.Command.END_COM)
print('* Data to runner:')
il.print()

View File

@ -1,7 +1,8 @@
from copapy import Write, cpvalue, NumLike
from copapy import cpvalue, NumLike
from copapy.backend import Write, compile_to_instruction_list
import copapy
import subprocess
from copapy import binwrite
from copapy import _binwrite
def run_command(command: list[str], encoding: str = 'utf8') -> str:
@ -25,16 +26,16 @@ def test_compile():
out = [Write(r) for r in ret]
il, _ = copapy.compile_to_instruction_list(out, copapy.generic_sdb)
il, _ = compile_to_instruction_list(out, copapy.generic_sdb)
# run program command
il.write_com(binwrite.Command.RUN_PROG)
il.write_com(_binwrite.Command.RUN_PROG)
il.write_com(binwrite.Command.READ_DATA)
il.write_com(_binwrite.Command.READ_DATA)
il.write_int(0)
il.write_int(36)
il.write_com(binwrite.Command.END_COM)
il.write_com(_binwrite.Command.END_COM)
print('* Data to runner:')
il.print()

View File

@ -31,7 +31,7 @@ def test_compile():
for test, ref, name in zip(ret, ret_ref, ['i1', 'i2', 'r1', 'r2']):
val = tg.read_value(test)
print('+', name, val, ref)
assert val == pytest.approx(ref, 1e-5), name
assert val == pytest.approx(ref, 1e-5), name # pyright: ignore[reportUnknownMemberType]
if __name__ == "__main__":

View File

@ -1,7 +1,8 @@
from coparun_module import coparun
from copapy import Write, cpvalue
from copapy import cpvalue
from copapy.backend import Write, compile_to_instruction_list, add_read_command
import copapy
from copapy import binwrite
from copapy import _binwrite
def test_compile():
@ -14,16 +15,16 @@ def test_compile():
r2 = i1 + 9
out = [Write(r1), Write(r2), Write(c2)]
il, variables = copapy.compile_to_instruction_list(out, copapy.generic_sdb)
il, variables = compile_to_instruction_list(out, copapy.generic_sdb)
# run program command
il.write_com(binwrite.Command.RUN_PROG)
il.write_com(_binwrite.Command.RUN_PROG)
for net in (c1, c2, i1, r1, r2):
copapy.add_read_command(il, variables, net)
add_read_command(il, variables, net)
# run program command
il.write_com(binwrite.Command.END_COM)
il.write_com(_binwrite.Command.END_COM)
#print('* Data to runner:')
#il.print()

View File

@ -1,7 +1,8 @@
from copapy import NumLike, Write, cpvalue, Net
from copapy import NumLike, cpvalue
from copapy.backend import Write, Net, compile_to_instruction_list, add_read_command
import copapy
import subprocess
from copapy import binwrite
from copapy import _binwrite
def run_command(command: list[str], encoding: str = 'utf8') -> str:
@ -28,21 +29,21 @@ def test_compile():
ret = function(c1, c2)
dw, variable_list = copapy.compile_to_instruction_list([Write(net) for net in ret], copapy.generic_sdb)
dw, variable_list = compile_to_instruction_list([Write(net) for net in ret], copapy.generic_sdb)
# run program command
dw.write_com(binwrite.Command.RUN_PROG)
dw.write_com(_binwrite.Command.RUN_PROG)
dw.write_com(binwrite.Command.READ_DATA)
dw.write_com(_binwrite.Command.READ_DATA)
dw.write_int(0)
dw.write_int(36)
for net, name in zip(ret, ['i1', 'i2', 'r1', 'r2']):
print('+', name)
assert isinstance(net, Net)
copapy.add_read_command(dw, variable_list, net)
add_read_command(dw, variable_list, net)
dw.write_com(binwrite.Command.END_COM)
dw.write_com(_binwrite.Command.END_COM)
dw.to_file('bin/test.copapy')
result = run_command(['bin/coparun', 'bin/test.copapy'])

View File

@ -1,5 +1,6 @@
from copapy import cpvalue, Target, NumLike, Net, iif, cpint
from pytest import approx
from copapy import cpvalue, Target, NumLike, iif, cpint
import pytest
import copapy
def function1(c1: NumLike) -> list[NumLike]:
@ -56,12 +57,12 @@ def test_compile():
print('* finished')
for test, ref in zip(ret_test, ret_ref):
assert isinstance(test, Net)
assert isinstance(test, copapy.CPNumber)
val = tg.read_value(test)
print('+', val, ref, test.dtype)
for t in [int, float, bool]:
for t in (int, float, bool):
assert isinstance(val, t) == isinstance(ref, t), f"Result type does not match for {val} and {ref}"
assert val == approx(ref, 1e-5), f"Result does not match: {val} and reference: {ref}"
assert val == pytest.approx(ref, 1e-5), f"Result does not match: {val} and reference: {ref}" # pyright: ignore[reportUnknownMemberType]
if __name__ == "__main__":

View File

@ -1,4 +1,4 @@
from copapy import stencil_database, stencil_db
from copapy._stencils import stencil_database, get_stencil_position
import platform
arch = platform.machine()
@ -19,9 +19,9 @@ def test_start_end_function():
if symbol.relocations and symbol.relocations[-1].symbol.info == 'STT_NOTYPE':
print('-', sym_name, stencil_db.get_stencil_position(symbol), len(symbol.data))
print('-', sym_name, get_stencil_position(symbol), len(symbol.data))
start, end = stencil_db.get_stencil_position(symbol)
start, end = get_stencil_position(symbol)
assert start >= 0 and end >= start and end <= len(symbol.data)

View File

@ -1,5 +1,5 @@
from copapy.binwrite import data_reader, Command, ByteOrder
from copapy.stencil_db import RelocationType
from copapy._binwrite import data_reader, Command, ByteOrder
from copapy._stencils import RelocationType
import argparse
if __name__ == "__main__":

View File

@ -144,7 +144,7 @@ if __name__ == "__main__":
// Auto-generated stencils for copapy
// Do not edit manually
double math_pow(double arg1, double arg2);
double (*math_pow)(double, double);
volatile int dummy_int = 1337;
volatile float dummy_float = 1337;

View File

@ -1,4 +1,5 @@
from copapy import cpvalue, Write, binwrite
from copapy import _binwrite, cpvalue
from copapy.backend import Write, compile_to_instruction_list
import copapy
@ -11,16 +12,16 @@ def test_compile() -> None:
out = [Write(r) for r in ret]
il, _ = copapy.compile_to_instruction_list(out, copapy.generic_sdb)
il, _ = compile_to_instruction_list(out, copapy.generic_sdb)
# run program command
il.write_com(binwrite.Command.RUN_PROG)
il.write_com(_binwrite.Command.RUN_PROG)
il.write_com(binwrite.Command.READ_DATA)
il.write_com(_binwrite.Command.READ_DATA)
il.write_int(0)
il.write_int(36)
il.write_com(binwrite.Command.END_COM)
il.write_com(_binwrite.Command.END_COM)
print('* Data to runner:')
il.print()