stencils: trig functions updated for 32 bit systems

This commit is contained in:
Nicolas Kruse 2025-11-10 00:05:54 +01:00
parent bbaac3c589
commit 330224562a
1 changed files with 6 additions and 11 deletions

View File

@ -2,21 +2,21 @@
const float PI = 3.14159265358979323846f;
const float PI_2 = 1.57079632679489661923f; // pi/2
const float TWO_OVER_PI = 0.63661977236758134308f; // 2/pi
const double TWO_OVER_PI = 0.63661977236758134308; // 2/pi
const double PIO2_HI = 1.57079625129699707031; // pi/2 high part
const double PIO2_LO = 7.54978941586159635335e-08; // pi/2 low part
NOINLINE float aux_sin(float x) {
// convert to double for reduction (better precision)
double xd = (double)x;
// quadrant index q = nearest integer to x * 2/pi
double qd = xd * (double)TWO_OVER_PI;
double qd = xd * TWO_OVER_PI;
// round to nearest integer (tie to even rounding not guaranteed)
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5));
// range-reduced remainder r = x q*(pi/2)
// use hi/lo parts for pi/2 to reduce error
const double PIO2_HI = 1.57079625129699707031; // ≈ first 24 bits
const double PIO2_LO = 7.54978941586159635335e-08; // remainder
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
@ -55,14 +55,12 @@ NOINLINE float aux_cos(float x) {
double xd = (double)x;
// quadrant index q = nearest integer to x * 2/pi
double qd = xd * (double)TWO_OVER_PI;
double qd = xd * TWO_OVER_PI;
// round to nearest integer (tie to even rounding not guaranteed)
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5));
// range-reduced remainder r = x q*(pi/2)
// use hi/lo parts for pi/2 to reduce error
const double PIO2_HI = 1.57079625129699707031; // ≈ first 24 bits
const double PIO2_LO = 7.54978941586159635335e-08; // remainder
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
@ -99,12 +97,10 @@ NOINLINE float aux_cos(float x) {
NOINLINE float aux_tan(float x) {
// Promote to double for argument reduction (improves precision)
double xd = (double)x;
double qd = xd * (double)TWO_OVER_PI; // how many half-pi multiples
double qd = xd * TWO_OVER_PI; // how many half-pi multiples
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5)); // nearest integer
// Range reduce: r = x - q*(pi/2)
const double PIO2_HI = 1.57079625129699707031; // pi/2 high part
const double PIO2_LO = 7.54978941586159635335e-08; // pi/2 low part
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
@ -192,7 +188,6 @@ NOINLINE float aux_atan2(float y, float x) {
}
NOINLINE float aux_asin(float x) {
const float PI_2 = 1.57079632679489661923f;
if (x > 1.0f) x = 1.0f;
if (x < -1.0f) x = -1.0f;