copapy/stencils/trigonometry.c

206 lines
6.5 KiB
C
Raw Normal View History

#include "stencil_helper.h"
2025-10-30 21:07:16 +00:00
const float PI = 3.14159265358979323846f;
const float PI_2 = 1.57079632679489661923f; // pi/2
const float TWO_OVER_PI = 0.63661977236758134308f; // 2/pi
NOINLINE float aux_sin(float x) {
2025-10-30 21:07:16 +00:00
// convert to double for reduction (better precision)
double xd = (double)x;
// quadrant index q = nearest integer to x * 2/pi
double qd = xd * (double)TWO_OVER_PI;
// round to nearest integer (tie to even rounding not guaranteed)
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5));
// range-reduced remainder r = x q*(pi/2)
// use hi/lo parts for pi/2 to reduce error
const double PIO2_HI = 1.57079625129699707031; // ≈ first 24 bits
const double PIO2_LO = 7.54978941586159635335e-08; // remainder
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
// Select function and sign based on quadrant
int qm = q & 3;
int use_cos = (qm == 1 || qm == 3);
int sign = (qm == 0 || qm == 1) ? +1 : -1;
float r2 = r * r;
if (!use_cos) {
// sin(r) polynomial: r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9
const float s3 = -1.6666667163e-1f;
const float s5 = 8.3333337680e-3f;
const float s7 = -1.9841270114e-4f;
const float s9 = 2.7557314297e-6f;
float p = ((s9 * r2 + s7) * r2 + s5) * r2 + s3;
float result = r + r * r2 * p;
return sign * result;
} else {
// cos(r) polynomial: 1 + c2*r2 + c4*r4 + c6*r6 + c8*r8
const float c2 = -0.5f;
const float c4 = 4.1666667908e-2f;
const float c6 = -1.3888889225e-3f;
const float c8 = 2.4801587642e-5f;
float p = ((c8 * r2 + c6) * r2 + c4) * r2 + c2;
float result = 1.0f + r2 * p;
return sign * result;
}
}
NOINLINE float aux_cos(float x) {
2025-10-30 21:07:16 +00:00
// convert to double for reduction (better precision)
double xd = (double)x;
// quadrant index q = nearest integer to x * 2/pi
double qd = xd * (double)TWO_OVER_PI;
// round to nearest integer (tie to even rounding not guaranteed)
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5));
// range-reduced remainder r = x q*(pi/2)
// use hi/lo parts for pi/2 to reduce error
const double PIO2_HI = 1.57079625129699707031; // ≈ first 24 bits
const double PIO2_LO = 7.54978941586159635335e-08; // remainder
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
// Select function and sign based on quadrant
int qm = q & 3;
int use_sin = (qm == 1 || qm == 3);
2025-11-01 12:43:22 +00:00
int sign = (qm == 0 || qm == 3) ? +1 : -1;
2025-10-30 21:07:16 +00:00
float r2 = r * r;
if (use_sin) {
// sin(r) polynomial: r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9
const float s3 = -1.6666667163e-1f;
const float s5 = 8.3333337680e-3f;
const float s7 = -1.9841270114e-4f;
const float s9 = 2.7557314297e-6f;
float p = ((s9 * r2 + s7) * r2 + s5) * r2 + s3;
float result = r + r * r2 * p;
return sign * result;
} else {
// cos(r) polynomial: 1 + c2*r2 + c4*r4 + c6*r6 + c8*r8
const float c2 = -0.5f;
const float c4 = 4.1666667908e-2f;
const float c6 = -1.3888889225e-3f;
const float c8 = 2.4801587642e-5f;
float p = ((c8 * r2 + c6) * r2 + c4) * r2 + c2;
float result = 1.0f + r2 * p;
return sign * result;
}
}
NOINLINE float aux_tan(float x) {
2025-10-30 21:07:16 +00:00
// Promote to double for argument reduction (improves precision)
double xd = (double)x;
double qd = xd * (double)TWO_OVER_PI; // how many half-pi multiples
int q = (int)(qd + (qd >= 0.0 ? 0.5 : -0.5)); // nearest integer
// Range reduce: r = x - q*(pi/2)
2025-11-01 12:43:22 +00:00
const double PIO2_HI = 1.57079625129699707031; // pi/2 high part
const double PIO2_LO = 7.54978941586159635335e-08; // pi/2 low part
2025-10-30 21:07:16 +00:00
double r_d = xd - (double)q * PIO2_HI - (double)q * PIO2_LO;
float r = (float)r_d;
2025-11-01 12:43:22 +00:00
// For tan: period is pi, so q mod 2 determines sign
2025-10-30 21:07:16 +00:00
int qm = q & 3;
int use_cot = (qm == 1 || qm == 3); // tan(x) = ±cot(r) in odd quadrants
2025-11-01 12:43:22 +00:00
int sign = (qm == 0 || qm == 2) ? +1 : -1;
2025-10-30 21:07:16 +00:00
// Polynomial approximations
// sin(r) ≈ r + s3*r^3 + s5*r^5 + s7*r^7 + s9*r^9
const float s3 = -1.6666667163e-1f;
const float s5 = 8.3333337680e-3f;
const float s7 = -1.9841270114e-4f;
const float s9 = 2.7557314297e-6f;
// cos(r) ≈ 1 + c2*r^2 + c4*r^4 + c6*r^6 + c8*r^8
const float c2 = -0.5f;
const float c4 = 4.1666667908e-2f;
const float c6 = -1.3888889225e-3f;
const float c8 = 2.4801587642e-5f;
float r2 = r * r;
float sin_r = r + r * r2 * (((s9 * r2 + s7) * r2 + s5) * r2 + s3);
float cos_r = 1.0f + r2 * (((c8 * r2 + c6) * r2 + c4) * r2 + c2);
float t;
if (!use_cot) {
// tan(r) = sin(r)/cos(r)
t = sin_r / cos_r;
} else {
// cot(r) = cos(r)/sin(r)
t = cos_r / sin_r;
}
// Avoid catastrophic explosion near vertical asymptotes
// Clip to a large finite value (~1e8)
if (t > 1e8f) t = 1e8f;
if (t < -1e8f) t = -1e8f;
return sign * t;
}
NOINLINE float aux_atan(float x) {
const float absx = x < 0 ? -x : x;
// Coefficients for a rational minimax fit on [0,1]
const float a0 = 0.9998660f;
const float a1 = -0.3302995f;
const float b1 = 0.1801410f;
const float b2 = -0.0126492f;
float y;
if (absx <= 1.0f) {
float x2 = x * x;
y = x * (a0 + a1 * x2) / (1.0f + b1 * x2 + b2 * x2 * x2);
} else {
float inv = 1.0f / absx;
float x2 = inv * inv;
float core = inv * (a0 + a1 * x2) / (1.0f + b1 * x2 + b2 * x2 * x2);
y = PI_2 - core;
}
return x < 0 ? -y : y;
}
NOINLINE float aux_atan2(float y, float x) {
if (x == 0.0f) {
if (y > 0.0f) return PI_2;
if (y < 0.0f) return -PI_2;
return 0.0f; // TODO: undefined
}
float abs_y = y < 0 ? -y : y;
float abs_x = x < 0 ? -x : x;
float angle;
if (abs_x > abs_y)
angle = aux_atan(y / x);
else
angle = PI_2 - aux_atan(x / y);
// Quadrant correction
if (x < 0) angle = (y >= 0) ? angle + PI : angle - PI;
return angle;
}
NOINLINE float aux_asin(float x) {
const float PI_2 = 1.57079632679489661923f;
if (x > 1.0f) x = 1.0f;
if (x < -1.0f) x = -1.0f;
const float c3 = 0.16666667f; // ≈ 1/6
const float c5 = 0.07500000f; // ≈ 3/40
const float c7 = 0.04464286f; // ≈ 5/112
float x2 = x * x;
float p = x + x * x2 * (c3 + x2 * (c5 + c7 * x2));
return p;
2025-10-30 21:07:16 +00:00
}